Role of QCD Monopoles in Jet Quenching

Based on: AR and E. Shuryak, arXiv:1708.04254, PRD 97 (in production)

Adith Ramamurti

JETSCAPE Winter School and Workshop

January 7, 2018

$R_{\mathsf{A}\mathsf{A}} \oplus v_2$ "puzzle"

- First RHIC data on the nuclear modification factor and azimuthal anisotropy in early/mid 2000s
 - Jet quenching models of the time under-predicted azimuthal anisotropy by approximately a factor of 2
- Improvements on jet quenching models to try to fix this discrepancy
 - Coupling of jets to flow Betz, Gyulassy (2014)
 - Event-by-event fluctuations Noronha-Hostler, Betz, Noronha, Gyulassy (2016)
 - Non-perturbative effects Liao, Shuryak (2008), Xu, Liao, Gyulassy (2015, 2016)
 - ...

$R_{\mathsf{A}\mathsf{A}} \oplus v_2$ "puzzle"

Shuryak (2007), Liao and Shuryak (2008)

Near T_c enhancement of jet quenching could explain large v_2

Magnetic Scenario of QCD

Dual Superconductivity Model of the QCD Vacuum Nambu (1974), Mandelstam (1976), 't Hooft (1981)

- Electric quasiparticles (quarks and gluons) and magnetic quasiparticles (monopoles, etc.)
- Confinement is due to the Bose-Einstein condensation (BEC) of magnetic quasiparticles
- Lattice studies have identified electric flux-tubes, monopole currents, and gauge-invariant magnetic field correlated with monopoles

```
Koma, et al. (2003), Bornyakov, et al. (2003)
```

Magnetic Scenario of QCD

- Condition for making Dirac strings invisible: $\frac{eg}{4\pi}$ = integer Dirac (1931)
 - $\alpha_s=e^2/4\pi$ in QCD runs with T and μ
 - $\alpha_m = g^2/4\pi$ runs oppositely

Liao and Shuryak (2007)

Adith Ramamurti (Stony Brook)

JETSCAPE Winter School and Workshop 2018

Monopoles on the Lattice: SU(2)

D'Alessandro and D'Elia (2007)

Matching Radial Distribution Functions

AR, E. Shuryak (2017)

Monopoles on the Lattice

Density: $\rho_m/T^3 \sim \log(T)^{-3} \rightarrow \text{Monopoles important near } T_c$

Adith Ramamurti (Stony Brook)

JETSCAPE Winter School and Workshop 2018

Lattice Equation of State

AR, E. Shuryak (2017)

Goals

Introduce monopoles into the BDMPS jet quenching framework \rightarrow jet observables

- Study the effects of different monopole density parameterizations
- Study the effects of different background evolutions
- Study the energy dependence of jet quenching parameters/observables

BDMPS

Baier, Dokshitzer, Mueller, Peigne, Schiff (1997, 1998)

• Energy loss:

$$-\frac{dE}{dz}\propto \hat{q}z$$

$$\hat{q}(z) \approx \rho(z) \int_0^{1/b^2} \mathrm{d}^2 \vec{q}_\perp \vec{q}_\perp^2 \frac{\mathrm{d}\sigma}{\mathrm{d}\vec{q}_\perp^2} (\vec{q}_\perp^2, z) \,,$$

where $\rho(z)$ is the density of scatterers.

• Screened Coulomb scattering centers:

$$V(q_{\perp}^2) = \frac{1}{\sigma} \frac{\mathrm{d}\sigma}{\mathrm{d}^2 \vec{q}_{\perp}} (\vec{q}_{\perp}) = \frac{\mu^2}{\pi (q_{\perp}^2 + \mu^2(z))^2}$$

Cross Sections

Generic form of ${\rm d}\sigma/{\rm d}q_{\perp}^2$ is

$$\frac{\mathrm{d}\sigma}{\mathrm{d}q_{\perp}^2} = \frac{C}{(q_{\perp}^2 + \mu^2)^2} \,.$$

$$\begin{aligned} \frac{\mathrm{d}\sigma_{qq}}{\mathrm{d}q_{\perp}^{2}} &= \frac{(4/3)^{2}\pi\alpha_{s}^{2}(q_{\perp}^{2})}{(q_{\perp}^{2}+\mu_{E}^{2})^{2}} \\ \frac{\mathrm{d}\sigma_{qg}}{\mathrm{d}q_{\perp}^{2}} &= \frac{4\pi\alpha_{s}^{2}(q_{\perp}^{2})}{(q_{\perp}^{2}+\mu_{E}^{2})^{2}} \\ \frac{\mathrm{d}\sigma_{gg}}{\mathrm{d}q_{\perp}^{2}} &= \frac{9\pi\alpha_{s}^{2}(q^{2})}{(q^{2}+\mu_{E}^{2})^{2}} \end{aligned}$$

$$\frac{\mathrm{d}\sigma_{qm}}{\mathrm{d}q_{\perp}^2} = \frac{(4/3)\pi}{(q_{\perp}^2 + \mu_M^2)^2}$$
$$\frac{\mathrm{d}\sigma_{gm}}{\mathrm{d}q_{\perp}^2} = \frac{3\pi}{(q_{\perp}^2 + \mu_M^2)^2}$$

Screening Masses

 $m_M/T = 4.48$

Borsányi, Fodor, Katz, Pásztor, Szabó, Török (2015)

Monopole Density

- Two forms of monopole density
 - Direct lattice measurement:
 Bonati, D'Elia (2013)

$$\frac{\rho_m}{T^3} = \frac{3.66}{\log((1/0.163)T/T_c)^3}$$

• Polyakov line with EoS: Xu, Liao, Gyulassy (2015)

$$\rho_E(T) \propto c_q L(T) + c_g L^2(T)$$

 $\rho_M(T) \propto 1 - \rho_E(T)$

Monopole Density

• Two forms of monopole density

Background Medium

- Focus on 20-30% centrality AA collisions
- Different expanding-medium backgrounds:
 - Glauber-like smooth initial conditions with Bjorken (1+1)D expansion
 - Glauber-like smooth initial conditions with (2+1)D expansion with and without bulk viscosity
 - IP-Glasma initial conditions with (2+1)D expansion with and without bulk viscosity

Background Medium

Example of the hydrodynamic evolution

Numerical Simulation

- 1 Jets created at $\tau = 0$ in the medium with probability proportional to energy density
- **2** Randomly oriented in azimuthal angle ϕ
- Initial energy is sampled from power law spectra for quarks and gluons
- Jet parton then traverses the (evolving) medium and loses energy
- **5** Fragmentation into pions / charged hadrons

Numerical Simulation

Energy loss given by

$$\begin{split} -\mathrm{d}E &= z\mathrm{d}z \frac{\alpha_s N_c}{12} \hat{q}(z, E) \\ &= z\mathrm{d}z \frac{\alpha_s N_c \pi C_p}{12} \left(\rho_q(z) \int_0^{q_{\max}^2} \mathrm{d}q^2 \frac{(4/3)\alpha_s^2(q^2)}{(q^2 + \mu_E^2(z))^2} \right. \\ &\quad + \rho_g(z) \int_0^{q_{\max}^2} \mathrm{d}q^2 \frac{3\alpha_s^2(q^2)}{(q^2 + \mu_E^2(z))^2} \\ &\quad + \rho_m(z) C_{\mathsf{corr}} \int_0^{q_{\max}^2} \mathrm{d}q^2 \frac{1}{(q^2 + \mu_M^2(z))^2} \end{split}$$

Nuclear Modification Factor R_{AA}

Azimuthal Anisotropy v_2

Predictions for the Beam Energy Scan

62.4 GeV Au-Au collisions, optical Glauber initial conditions

 $R_{\rm AA}$ and v_2 of same magnitude as higher energy collisions

Summary

- BDMPS framework with monopoles can reproduce correct trends for experimental observables
 - Needs realistic hydrodynamic background, but event-by-event fluctuations not necessary except for dijet asymmetry
- Lower energy collisions should see similar v_2 and R_{AA} to higher energy collisions \rightarrow monopole dominated
 - Can be probed in Beam Energy Scan

Backup Slides

Adith Ramamurti (Stony Brook) JETSCAPE Winter S

JETSCAPE Winter School and Workshop 2018

Monopoles on the Lattice: SU(3)

Bonati and D'Elia (2013)

Adith Ramamurti (Stony Brook)

JETSCAPE Winter School and Workshop 2018

Monopole Correlations

Reduction in momentum transfer due to correlated + and - charges

Dijet Asymmetry A_j

Dijet Asymmetry A_j

 p_{\perp} cut makes large difference in result!

Dijet Asymmetry A_j

Jets only from center give different distribution than observed