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Motivating Gaussian Process Emulation and Calibration

I Scientists want to learn about some physical system, but data are
really hard to collect

I Experimentation is costly (money, time, etc.)

1 2

1
http://cms.web.cern.ch/news/jet-quenching-observed-cms-heavy-ion-collisions

2
http://www.massey.ac.nz/massey/fms/Rivers/ruapehu-lahars-2d-modelling.png
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Motivating Gaussian Process Emulation and Calibration

I So the scientists build a computer model of the system that they
believe accurately reflects reality

I Often model has unknown constant as input parameter, want to make
a good guess at true value

I Strategy: try a bunch of different points in the input parameter
space, and compare the computer output to the experimental data to
find the “best” point in the input parameter space.

So what’s the problem?

I To rigorously make estimates for those input parameters, one needs ∼
104 or 105 model runs

I Often, models take at least a few hours to run - obviously infeasible
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Motivating Gaussian Process Emulation and Calibration

Solution! - Gaussian Process (GP) Emulators

I Statisticians use GP as black box that says “close in input → close in
output”

I “Emulator” of computationally expensive computer model -
interpolation with uncertainty

So how do we use this?

I Now, toggling inputs with GP gives super fast predictions

I Easy to make many predictions to compare to experimental data
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Flowchart of Analysis

Posterior Distribution
• diagonals: probability distribution of each 

parameter, integrating out all others
• off-diagonals: pairwise distributions showing 

dependence between parameters 

Physics Model:
• Trento
• iEbE-VISHNU

Model Parameters - System Properties
• initial state
• temperature-dependent viscosities
• hydro to micro switching temperature

Experimental Data
• RHIC & LHC flow & spectra

Gaussian Process Emulator
• non-parametric interpolation
• fast surrogate to full Physics Model

MCMC
(Markov-Chain Monte-Carlo)

• random walk through parameter space 
weighted by posterior probability

Bayes’ Theorem
posterior∝likelihood × prior

• prior: initial knowledge of parameters
• likelihood: probability of observing exp. 

data, given  proposed parameters

after many steps, MCMC equilibrates to

calculate events on Latin hypercube

Extraction of QGP Properties via a Model-to-Data Analysis
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Overview of Analysis

Designing the Training Points - Latin Hypercube

Training and Validating GP Emulators
GP Basics
Multivariate Output - PCA

Calibration
Intro to Bayesian Analysis
Emulation Context
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Designing the Training Points - Latin Hypercube

Why is Design Important?

The design points are the points in the input parameter space at which
the scientists run the expensive computer model.

I To trust the black box GPs, they have to be trained on appropriate
points

I A grid is inefficient - nd total points for only n different marginal
points
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Designing the Training Points - Latin Hypercube

Latin Hypercube Design

I Ensures that there is only one design point in each row and column

I Every design point is in exactly one “bin” for each dimension

3

3
https://upload.wikimedia.org/wikipedia/commons/f/fb/LHSsampling.png
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Training and Validating GP Emulators

Overview

Designing the Training Points - Latin Hypercube

Training and Validating GP Emulators
GP Basics
Multivariate Output - PCA

Calibration
Intro to Bayesian Analysis
Emulation Context
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Training and Validating GP Emulators GP Basics

Motivating Example

We have 5 points from some unknown function - in our case, a physics
computer model.

What could we use to predict new points?
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Training and Validating GP Emulators GP Basics

Motivating Example

Looks kind of linear...?
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Training and Validating GP Emulators GP Basics

Motivating Example

If we add some more runs of the model...

Clearly need something more flexible
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Training and Validating GP Emulators GP Basics

Motivating Example

We want a method for interpolating that:

I Is flexible for any shape

I Offers plausible uncertainty values

I Predicts nearby values in input to be close to values in output
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Training and Validating GP Emulators GP Basics

GPs In Action

Training on these model runs, we wish to predict all the points in between

J. Coleman, R. Wolpert, S. Bass Calibration and Prediction with Gaussian Process EmulatorsJanuary 4, 2018 16 / 50



Training and Validating GP Emulators GP Basics

GPs In Action

Prediction = mean + uncertainty

The gray bands are 95% confidence intervals.
J. Coleman, R. Wolpert, S. Bass Calibration and Prediction with Gaussian Process EmulatorsJanuary 4, 2018 17 / 50



Training and Validating GP Emulators GP Basics

GPs In Action

Comparison to truth (black line)
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Training and Validating GP Emulators GP Basics

What is a GP?

Technical Terms: A Gaussian Process (GP) is a stochastic process Y
indexed by x ∈ X such that realizations are jointly Multivariate Normal.

Ok, but what does that mean?

I If given x1, . . . xn locations, we can find the joint distribution for
outputs (Y (x1), . . .Y (xn)) - and it’s Multivariate Normal

I Our function Y () is random, but we can make guesses based on input
x and other observed values of Y .

I It is completely determined by a mean function µ(·) and a
positive-definite covariance function c(·, ·) through

µi = µ(xi ) Σij = c(xi , xj)
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Training and Validating GP Emulators GP Basics

A Concrete example

I Let points x1, x2, . . . xn ∈ X , where X is the input space.

I Let Y (·) ∼ GP(µ(·), c(·, ·)). Then
Y (x1)
Y (x2)

...
Y (xn)

 ∼ MVN



µ(x1)
µ(x2)

...
µ(xn)

 ,

c(x1, x1) . . . c(x1, xn)
...

. . .
...

c(xn, x1) . . . c(xn, xn)




I Examples: µ(·) ≡ 0; µ(·) ≡ µ; µ(x) ≡
∑

i xiβ, . . .,

I c(·, ·) are special functions that give rise to symmetric positive
definite matrices
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Training and Validating GP Emulators GP Basics

Example Covariance Functions

The covariance function c(·, ·) is often of the form
c(x, x′) = λ−1r(x− x′ | α, `). Examples of r(· | α, `):

I Power Exponential: r(h | α, `) = e−|h/`|
α
, where α ∈ [1, 2]

I Usually learn ` and fix α. Setting α = 2 makes the function infinitely
differentiable - maybe undesirable.

I Sometimes set α = 1.9 for computational stability

I Matérn: r(h | α, `) = 21−α

Γ(α)

(
h
`

)α
Kα
(
h
`

)
, where Kα is the modified

Bessel function of the second kind
I For α = n/2 for n ∈ N, this has closed form. Most common are
α = 3/2 and α = 5/2

I α = 3/2 : r(h | `) = e−h/`
(
1 + h

`

)
I α = 5/2 : r(h | `) = e−h/`

(
1 + h

`
+ h2

3`2

)
Usually assume separable covariance function. That is, if x has J
dimensions, then r(x− x′ | αj , `j)) =

∏J
j=1 rj(xj − x ′j | αj , `j))

J. Coleman, R. Wolpert, S. Bass Calibration and Prediction with Gaussian Process EmulatorsJanuary 4, 2018 21 / 50



Training and Validating GP Emulators GP Basics

What does this look like unconstrained?

Figure: Unconstrained realizations from a mean-zero GP distribution.

Note: The gray rectangle represents the 95% confidence bounds, which
are constant across the input
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Training and Validating GP Emulators GP Basics

Conditioning on the Design Points

I The previous picture wasn’t terribly useful because it incorporated no
information about Y (·)

I Use multivariate normal theory to condition on the output at the
design points

I i.e., We calculate Y (xd1),Y (xd2), . . .Y (xdq) (our function at design
points xd1 , . . . xdq) - then for any new input x∗, we automatically
know the distribution of Y (x∗)
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Training and Validating GP Emulators GP Basics

Conditional Normal Theory

Let Y (xd) = [Y (xd1), . . . ,Y (xdn)]′ ∈ Rn, and similarly c(xd, xd) ∈ Rn×n(
Y (x∗)
Y (xd)

)
∼ MVN

[(
µ(x∗)
µ(xd)

)
,

(
c(x∗, x∗) c(x∗, xd)
c(xd, x

∗) c(xd, xd)

)]

then Y (x∗) | (Y (xd) = y) ∼ N(µ∗,Σ∗) where

µ∗ = µ(x∗) + c(x∗, xd)c(xd, xd)−1(y − µY )

Σ∗ = c(x∗, x∗)− c(x∗, xd)c(xd, xd)−1c(xd, x
∗)

The punchline - if we know that the joint multivariate Gaussian
distribution of Y (x∗) and Y (xd), it’s really easy to draw the conditional
distribution of Y (x∗) given Y (xd)
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Training and Validating GP Emulators GP Basics

What does this look like?

Figure: Realizations of GP conditioned on output at design points (black dots)

This is the same picture as before - the extra lines are just draws from the
multivariate normal with the conditional mean of the blue line and the
conditional covariance matrix as described.
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Training and Validating GP Emulators GP Basics

Short Recap of Using Gaussian Processes

I Pick a set of design points {xd1 , . . . , xdq}, calculate output
{Y (xd1), . . . ,Y (xdq)}

I Choose mean function µ(·) and covariance function c(·, ·)

I Train the GP on the design points and model output to find
appropriate hyperparameters for c(·, ·)

I For any set of unknown point x∗, find the mean and covariance of
Y (x∗) by following the conditional normal distribution rules
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Training and Validating GP Emulators Multivariate Output - PCA

Common Issue - Multivariate Output

I The above theory works great...assuming your function Y () only has
one output

I But this is rarely the case - usually have multiple observables for each
model run

I Can’t just train independent GPs for each observable, because the
observables probably aren’t independent

I With many observables, probably desire dimension reduction as well
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Training and Validating GP Emulators Multivariate Output - PCA

Solution - Principal Components Analysis

I Both problems (dependent columns and high dimensionality) can be
solved with PCA

I PCA rotates (centered and scaled) output matrix Y ∈ Rn×p onto an
orthogonal space

I Because new columns are orthogonal, they are independent (MVN
property)

I Uses Singular Value Decomposition to find directions of highest
variation of data

Y = USV′ → Z = YV

I Train R emulators on first R columns of Z
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Training and Validating GP Emulators Multivariate Output - PCA

Overview of Analysis (So Far)

Train the Emulators

I Rotate your output data Y via PCA into an orthogonal space Z = YV

I Train R emulators {zi (·)} on first R columns of Z

Predicting

I For new x∗, predict zi (x
∗) for each of the R emulators

I Let z(x∗) = [z1(x∗), . . . , zR(x∗)], and rotate to physical space by
y(x∗) = z(x∗)V′
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Training and Validating GP Emulators Multivariate Output - PCA

Flowchart of Analysis

Posterior Distribution
• diagonals: probability distribution of each 

parameter, integrating out all others
• off-diagonals: pairwise distributions showing 

dependence between parameters 

Physics Model:
• Trento
• iEbE-VISHNU

Model Parameters - System Properties
• initial state
• temperature-dependent viscosities
• hydro to micro switching temperature

Experimental Data
• RHIC & LHC flow & spectra

Gaussian Process Emulator
• non-parametric interpolation
• fast surrogate to full Physics Model

MCMC
(Markov-Chain Monte-Carlo)

• random walk through parameter space 
weighted by posterior probability

Bayes’ Theorem
posterior∝likelihood × prior

• prior: initial knowledge of parameters
• likelihood: probability of observing exp. 

data, given  proposed parameters

after many steps, MCMC equilibrates to

calculate events on Latin hypercube

Extraction of QGP Properties via a Model-to-Data Analysis
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Calibration

Overview

Designing the Training Points - Latin Hypercube

Training and Validating GP Emulators
GP Basics
Multivariate Output - PCA

Calibration
Intro to Bayesian Analysis
Emulation Context
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Calibration Intro to Bayesian Analysis

What is Bayesian Analysis?

I The Bayesian paradigm is one in which we believe unknown
parameters have distributions, rather than assuming they’re fixed at
unknown values

I We assert prior beliefs about those distributions, use data to update
beliefs to posteriors

I Framework for uncertainty in very complicated models

We’re going to use this framework to perform inference on our unknown
input parameters.
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Calibration Intro to Bayesian Analysis

Proper Math

Let θ be a parameter of interest, upon which data y depends. Bayesian
analysis has three main components:

1. A chosen prior distribution on θ: p(θ)

2. A specified likelihood of y : p(y | θ)

3. A resulting (of interest) posterior of θ: p(θ | y)

In other words: given some prior belief of θ and data from a model that
depends on θ, what are our posterior beliefs of θ given the data? We
explore this through Bayes Rule:

p(θ | y) =
p(y | θ)p(θ)∫

Θ p(y | θ)p(θ)dθ

∝ p(y | θ)p(θ)
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Calibration Intro to Bayesian Analysis

Why Do Bayesian Analysis?

I Tractable inference for very complicated models

I If you can write down a likelihood and prior, you’re good!

I Can incorporate expert information

Downsides?

I Often posterior is not analytically available or a known distribution, so
we have to resort to sampling methods

I Sampling schemes can be more computationally intensive than
non-Bayesian methods

I Most common is Markov Chain Monte Carlo (MCMC)
I Basic idea is to chain together a bunch of samples in a specific way

such that they eventually will be draws from the posterior
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Calibration Emulation Context

Calibration Setup

Let’s get some notation for all the pieces.

I yexp: experimental result

I σ2
e : experimental variance (specified ahead of time)

I fM(): Computer function, calculated at Latin Hypercube design points

I fG (): GP that will serve as surrogate for fM()

I θ: Vector of input parameters to computer model (doesn’t change in
nature)

Now, a model!

yexp ∼ N(fM(θ), σ2
e )

∼ N(fG (θ), σ2
e )

fG (θ) ∼ N(µ∗,Σ∗)

θ ∼ Unif(θmin, θmax)

µ∗ and Σ∗ calculated from conditional multivariate normal rules.
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Calibration Emulation Context

Incorporating PCA

Use PCA for when data has multiple observables:

Let the computer output Y = USV′, so Z = YV is a matrix of PCs

yexp ∼ N(fM(θ),Σe)

∼ N(fG (θ)V′r ,Σe)

f
(i)
G (θ) ∼ N(µ(i)∗,Σ(i)∗)

θ ∼ Unif(θmin, θmax)

Here f
(i)
G is the ith GP trained on the ith column of Z.
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Calibration Emulation Context

Flowchart of Analysis

Posterior Distribution
• diagonals: probability distribution of each 

parameter, integrating out all others
• off-diagonals: pairwise distributions showing 

dependence between parameters 

Physics Model:
• Trento
• iEbE-VISHNU

Model Parameters - System Properties
• initial state
• temperature-dependent viscosities
• hydro to micro switching temperature

Experimental Data
• RHIC & LHC flow & spectra

Gaussian Process Emulator
• non-parametric interpolation
• fast surrogate to full Physics Model

MCMC
(Markov-Chain Monte-Carlo)

• random walk through parameter space 
weighted by posterior probability

Bayes’ Theorem
posterior∝likelihood × prior

• prior: initial knowledge of parameters
• likelihood: probability of observing exp. 

data, given  proposed parameters

after many steps, MCMC equilibrates to

calculate events on Latin hypercube

Extraction of QGP Properties via a Model-to-Data Analysis
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Calibration Emulation Context

Calibration Results Example - Posterior Draws
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Calibration Results Example - Model Output Comparison
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Recap of Whole Analysis

1. Pick design points via a Latin Hypercube, run the computer model at
those design points.

2. Transform the computer output via PCA, pick R principal
components.

3. Pick a covariance function, and train R independent GPs on the first
R columns of the PCA-transformed computer model output.

4. Perform calibration, getting posterior draws for input parameters.
I For each θ draw, find the GP predictions, transform them back from

PCA, then put those values in the likelihood.
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Some References

I For more information on Gaussian Processes, see
[Rasmussen and Williams, 2006]. The full book is available online.

I For more details on GP Emulation and Calibration, see
[Bayarri et al., 2007] and [Higdon et al., 2008].

I The former describes the same process in this talk of separating
training the GPs and performing calibration (called modularization).

I The latter describes the use of PCA in calibration.
I Both resources describe modeling a discrepancy function as a way to

capture the systematic departure of the computer model from the
experimental data. Our model neglects this discrepancy because we
assume no input parameters that varies in both nature and model.
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Appendix - Conditional Multivariate Normal Theory

Let Z ∈ Rnz and Y ∈ Rny be multivariate normal, with joint density(
Z
Y

)
∼ MVN

[(
µZ

µY

)
,

(
ΣZZ ΣZY

ΣYZ ΣYY

)]
I Remember, ΣZY 6= 0⇔ Z,Y not independent

I I.e., if we know something about Y, we should have more information
about Z, and vice versa

I In fact, if we know the true value of Y (say its known value is y), it
turns out the conditional distribution of Z | (Y = y) is also
multivariate normal (with adjusted mean and covariance)

I This is somewhat special to multivariate normals
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Appendix - Conditional Multivariate Normal Theory

Let Z ∈ Rnz and Y ∈ Rny be multivariate normal, with joint density(
Z
Y

)
∼ MVN

[(
µZ

µY

)
,

(
ΣZZ ΣZY

ΣYZ ΣYY

)]
then Z | (Y = y) ∼ MVN(µZ |Y ,ΣZ |Y ) where

µZ |Y = µZ + ΣZY ΣYY
−1(y − µY )

ΣZ |Y = ΣZZ − ΣZY ΣYY
−1ΣYZ
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Appendix - Conditional Multivariate Normal Theory

Let Z ∈ Rnz and Y ∈ Rny be multivariate normal, with joint density(
Z
Y

)
∼ MVN

[(
µZ

µY

)
,

(
ΣZZ ΣZY

ΣYZ ΣYY

)]
then Z | (Y = y) ∼ MVN(µZ |Y ,ΣZ |Y ) where

µZ |Y = µZ + ΣZY ΣYY
−1(y − µY )

ΣZ |Y = ΣZZ − ΣZY ΣYY
−1ΣYZ

The punchline - if we know that the joint distribution of Z and Y is
multivariate normal, it’s really easy to draw the conditional distribution of
Z given Y
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Appendix - Conditional Multivariate Normal Theory

Apply the above theory to Computer Emulation

I Let D = {x} be the design points in X for which we know Y (x), of
length pD

I Let U = {x} be the points in X for which Y (x) is unknown, of
length pU

I Let µ(D) be the vector where µ(·) is applied to each x ∈ D, and
µ(U) similar

I Let c(D,U) be the matrix where c({xi}, {xj}) is applied for each
xi ∈ D and xj ∈ U.

I So c(D,U) ∈ RpD×pU

(
Y (U)
Y (D)

)
∼ MVN

[(
µ(U)
µ(D)

)
,

(
c(U,U) c(U,D)
c(D,U) c(D,D)

)]
So we can estimate (with uncertainty!) Y (U) conditioned on Y (D) based
solely conditional normal theory!
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Appendix - Quick Intro to MCMC

MCMC stands for Markov Chain Monte Carlo
I We have a parameter θ that we want to learn things about (its mean,

variance, etc.). If we knew the distribution of θ (say π(θ)), we could
just make a bunch of draws from that distribution, and look at the
mean and variance of the draws.

I Imagine you have a weighted coin, but you don’t know the probability
of heads. You could just flip the coin 1,000 times and average the
number of heads to get an estimate.

I This is the “Monte Carlo” portion - the output is random but still helps
us learn about the parameter

I Often the distribution we care about is super complicated and/or high
dimensional, so it’s not easy to make draws from it.

I Instead of drawing directly from π(θ), we use algorithms to draw a
chain of θ(t) that theory tells us will converge to draws from π(θ)

I This is the “Markov Chain” part - the draws θ(t) are a chain that
converge in distribution to what we care about
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Appendix - Covariance Matrix Details

The specification of the experimental covariance matrix Σe is important
for calibration. It is given in the model rather than learned.

I The Python distribution uses a block-diagonal construction, with a
block for each observable.

I It also assumes the observables are indexed by some continuous
variable - in our example, this is transverse momentum pT .

I i.e., there is a value of each observable for each pT

Σ(k) = Σ
(k)
sys + Σ

(k)
stat

Σ
(k)
stat = σstat

i ,k σ
stat
j ,k δij

Σ
(k)
sys = σsys

i ,k σ
sys
j ,k exp

[
−
(
pi ,k − pj ,k

`k

)2
]
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Σ(k) = Σ
(k)
sys + Σ

(k)
stat

Σ
(k)
stat = σstat

i ,k σ
stat
j ,k δij

Σ
(k)
sys = σsys

i ,k σ
sys
j ,k exp

[
−
(
pi ,k − pj ,k

`k

)2
]

I σsys
i ,k is the systematic error for the ith value of the kth observable

I σstat
i ,k is the statical error for the ith value of the kth observable

I Σ
(k)
stat as above is diagonal

I pi ,k is the ith transverse momentum of the kth observable

I Σ
(k)
sys is scaled on the off-diagonal by a correlation function applied to

the distance between the pT values.

I `k is estimated via MLE
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