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Ideal hydro is the most important:

∂µT
µν = 0

What is T µν?

1. There is a rest frame uµ(x) = (γ, γv) we are in local perfect equilibrium:

T µν = e(x)uµ(x)uν(x) + P(e)︸︷︷︸
equation of state

(ηµν + uµ(x)uν(x)) +

. . .Corrections

2. From uν∂µT
µν = 0 and the EOS derive:

∂µ(suµ) = 0︸ ︷︷ ︸
The final particle yield is determined by the initial entropy



The Equation of State



Lattice QCD and the QCD equation of state:

Compute the equation of state by sampling fields with the statistical weight:

Z ∼
∫

[DA]e−SQCD[A]



The QCD Equation of State (Budapest-Wuppertal Collaboration)

Nf =2+1 flavour equation of state

Figure 5: The energy density normalized by T 4 as a function of the temperature onNt = 6,8 and 10 lattices.
The Stefan-Boltzmann limit εSB = 3pSB is indicated by an arrow.

Figure 6: The speed of sound squared as a function of the temperature on Nt = 6,8 and 10 lattices. The
Stefan-Boltzmann limit is c2s,SB = 1/3 indicated by an arrow.
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1. The “critical” energy density and temperature are

ec ' 1 GeV/fm3 Tc ' 160 MeV

Need reach an energy density of ec over a Large volume for Long enough.



Ideal hydro is the most important:

∂µT
µν = 0

What is T µν?

1. There is rest a uµ(x) = (γ, γv) where we are in local perfect equilibrium:

T µν = e(x)uµ(x)uν(x) + P(e)︸︷︷︸
equation of state

(ηµν + uµ(x)uν(x)) +

. . .+ Corrections



The Hydrodynamic Effective Theory



Viscous Bjorken expansion at 0th, 1st, 2nd order

(Bjorken, Gyulassy, BRSSS)

T zz

〈T zz〉
e+ p

=
[ p

e+ p︸ ︷︷ ︸
∼ 1

− 4

3

γη
τ︸︷︷︸

1st order

+
(λ1 − ητπ)

e+ p

8

9τ 2︸ ︷︷ ︸
2nd order

+ . . .
]

γη ≡ η/(e+ p)



Viscous Bjorken expansion at 1st and 2nd order + 1 loop!

(Bjorken; Gyulassy; BRSSS; Akamatsu,Mazeliauskas,Teaney)

T zz

〈T zz〉
e+ p

=
[ p

e+ p︸ ︷︷ ︸
∼ 1

− 4

3

γη
τ︸︷︷︸

1st order

+
1.08318

s (4πγητ)3/2︸ ︷︷ ︸
3/2 order!

+
(λ1 − ητπ)

e+ p

8

9τ 2︸ ︷︷ ︸
2nd order

+ . . .
]

γη ≡ η/(e+ p)



Viscous Bjorken expansion at 1st and 2nd order
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Fig. 14. The energy density (⇥⌧) relative to the initial energy density (⇥⌧o) for a 0+1 dimensional
Bjorken expansion. The temperature is To ' 300 MeV and ⌧o ' 1 fm, so that 1/⌧oTo ' 0.66. The

second order correction is smaller than expected due to a cancellation between the relaxation term

⇠ ⌘⌧⇡D� and the viscoelastic term31, ⇠ �1��. In a relaxation time approximation the second
order correction vanishes (see text).
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Generally the e↵ect of second order terms is small (due to the cancellation) and

the value of the first order terms drive the correction to the ideal evolution.

5. Kinetic Theory Description

In Section 4 we discussed various aspects of viscous hydrodynamics as applied to

heavy ion collisions. Since ultimately the experiments measure particles, there is a

need to convert the hydrodynamic information into particle spectra. This section

will provide an introduction to the matching between the kinetic and hydrodynamic

descriptions. This will be important when comparing the hydrodynamic models to

data in Section 6. In addition, since Section 3 discussed various calculations of

the shear viscosity in QCD, this section we will sketch briefly how these kinetic

calculations are performed. Good summaries of this set of steps are provided by

Refs.99,73,100.

In kinetic theory the spectrum of particles in a volume ⌃ is given by the Cooper-

Frye formula101

E
d3N

d3p
=

1

(2⇡)3

Z

⌃

d⌃µPµ f(�P · u) . (84)

For typical parameters, the hydro effective theory is effective!



Initial conditions



Typical (somewhat) misleading color plot



Typical (not-quite-as) misleading plot
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FIG. 1. A typical entropy density profile (times ⌧init) for a
single event used as an initial condition in current hydrody-
namic simulations at the LHC for a 0-5% centrality class [21].
An event averaged initial condition is shown by the dashed
line. Often the initial flow velocity is set to zero. The di↵erent
scales are discussed in the text.

initial energy profile to hydrodynamics, the weak cou-
pling approximations made in the IP-glasma model lead
naturally to e↵ective kinetic theory.

Fig. 1 shows a typical transverse (entropy) profile that
is used in current hydrodynamic simulations [21]. Clearly
during the equilibration process the profile will change
and generate intial flow. The equilibration time, c⌧init, is
short compared to the nuclear radius, R. For this reason
the prethermal evolution is insensitive to the global col-
lision geometry. Indeed, we may decompose the trans-
verse plane into causally disconnected patches of size
c⌧init ⌧ R whose prethermal evolution can be separately
determined. In these patches, the global nuclear geom-
etry determines a small gradient that can be considered
as a linear perturbation over a translationally invariant
background. Thus, corrections to initial conditions for
hydrodynamics from the global geometry are of order
c⌧init/R [22]. In addition to the global geometry, the ini-
tial energy density profile includes event-by-event fluc-
tuations at smaller scales set by the nucleon size Rp,
which is comparable to the causal horizon Rp ⇠ c⌧init.
Event-by-event fluctuations at these length scales are
suppressed by 1/

p
Npart where Npart is the number of

participating nucleons in the event, Npart ⇠ 100 � 300.
Therefore, such fluctuations can also be treated in a lin-
earized way as fluctuations over a translationally invari-
ant background. The structure of the initial profile at
even smaller scales is less well known, but in models based
on CGC, one expects fluctuations to subnuclear scales of
order the saturation momentum, Q�1

s ⇠ 0.1 fm.

Finally, an important scale is set by the mean free path,
which in a weakly coupled theory is of order 1/�2Te↵

for states not too far from equilibrium. In practice, this
length scale is comparable, though slightly shorter than
the causal horizon and the nucleon scales. Without the
scale separation, the medium prethermal response to ini-
tial perturbations in the transverse plane can only be
computed by a calculation within the EKT. Fortunately,
as discussed above linearized kinetic theory is su�cient
to determine this response.

To summarize, our strategy is to use linearized ki-
netic theory to follow the hydrodynamization of pertur-
bations on top of a far-from-equilibrium Bjorken back-
ground with translational symmetry in the transverse di-
rections. This determines the stress tensor for hydrody-
namics at the initialization time. The length scales of
relevance are the nuclear-geometry, the nucleonic scale,
the causal horizon c⌧init, and the mean free path

R � Rp ⇠ c⌧init ⇠
1

�2Te↵
.

By linearizing the problem and solving for the response,
we will determine a Green function describing how an
energy fluctuation at the earliest moments, ⌧ ⇠ 1/Qs,
evolves during the equilibration process to the hydrody-
namic fields, i.e. the energy and momentum densities,
�T 00(⌧init,x?) and �T 0i(⌧init,x?) respectively. We will
verify that the subsequent evolution is described by sec-
ond order hydrodynamics to certifiable precision.

In Section II we outline the linearized EKT, and study
the linear response of the EKT in equilibrium. In Sec-
tion III we systematically study the approach to equi-
librium of Fourier modes of specified k, starting with
a far from equilibrium initial state. In Section IV we
Fourier transform these results and determine a coor-
dinate space Green function which produces the appro-
priate initial conditions for hydrodynamics at ⌧init when
convolved with a specified initial state. We also analyze
the long wavelength limit of these Green functions, mak-
ing contact and providing additional insight into previous
work on preflow [22]. Finally, we discuss our conclusions
in Section V.

II. LINEARIZED KINETIC THEORY

A. Setup

At weak coupling the non-equilibrium evolution of the
boost invariant color and spin averaged gluon distribu-
tion function is described in terms of an e↵ective kinetic
equation [14]

@⌧fx?,p +
p

|p| · rx?fx?,p � pz

⌧
@pz

fx?,p = �C[fx?,p],

(1)

where the e↵ective collision kernel C[f ] incorporates the
elastic 2 $ 2 and inelastic 1 $ 2 processes as required
for a leading order description in the coupling constant



Gaussian model (independent cluster) compared to Glauber codes Bhalerao, Luzum, Ollitrault
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A. Analytic results

We denote by ⟨f(x, y)⟩ the average value of f(x, y) with
the source probability density p(x⃗), and we introduce the
notation δf ≡ {f} − ⟨f⟩ for the event-by-event fluctua-
tions. We use the complex coordinate z = x + iy. The
asymmetry εn is given by Eq. (3), where we replace reiφ

by z − δz to take into account the recentering correction.
To leading order in fluctuations, one obtains

ε3e
3iΦ3 = −{(z − δz)

3}
{r3} ≃ −δz3 − 3⟨z2⟩δz

⟨r3⟩
ε1e

iΦ1 = −{(z − δz)
2(z̄ − δz̄)}

{r3}
≃ −δz2z̄ − 2⟨zz̄⟩δz − ⟨z2⟩δz̄

⟨r3⟩ , (9)

where z̄ = x−iy. The rms value of εn involves an average
over events of products of δ’s. Two-point averages are
computed using the following identity, which holds for
independent sources [26]:

⟨δfδg⟩ =
⟨fg⟩ − ⟨f⟩⟨g⟩

N
. (10)

We thus obtain, using the identities ⟨znz̄m⟩ = 0 for odd
n−m and ⟨znz̄m⟩ = ⟨rn+m cos((n−m)φ)⟩ for even n−m:

ε3{2}2 =
⟨r6⟩ + 6εs⟨r2⟩⟨r4 cos 2φ⟩ + 9ε2

s⟨r2⟩3
N⟨r3⟩2

ε1{2}2 =
1

N⟨r3⟩2
[
⟨r6⟩ − 4⟨r2⟩⟨r4⟩ + 4⟨r2⟩3

+2εs⟨r2⟩⟨r4 cos 2φ⟩ + 5ε2
s⟨r2⟩3

]
. (11)

In these equations, εs ≡ −⟨r2 cos 2φ⟩/⟨r2⟩ denotes the
standard eccentricity. We also recall the result for ε2{2}
which has been derived earlier [26].

ε2{2}2 = ε2
s +

⟨r4⟩(1 + 3ε2
s) + 4εs⟨r4 cos 2φ⟩
N⟨r2⟩2 . (12)

The first term in the right-hand side is the standard ec-
centricity, and the second term is the contribution of ec-
centricity fluctuations to order 1/N . For a large number
of sources, N ≫ 1, the participant eccentricity ε2 reduces
to the standard eccentricity, while odd harmonics ε1 and
ε3 vanish.

B. Comparison with Monte-Carlo results

We now compare analytic results derived from our
independent-source model with results obtained using
the mckt-v1.00 Monte-Carlo [32]. With this Monte-
Carlo one can calculate results from both a Color-
Glass-Condensate (CGC) inspired model — the MC-
KLN [33] improved with running-coupling BK uninte-
grated gluon densities [34], as well as a standard Monte-
Carlo Glauber [35]. We present only results for Pb-
Pb collisions at 2.76 TeV per nucleon-nucleon collision,

though results for 200 GeV Au-Au collisions agree equally
well. In the Glauber model, each participant nucleon
is given a weight [36] w = 1 − x + xNcoll, where Ncoll

is the number of binary collisions of that nucleon, and
x = 0.18 [37].

One input of our model is the probability distribution
of sources in the transverse plane, p(x⃗). For the sake
of consistency, we assume that sources are distributed
according to the average density profile: p(x⃗) ≡ ⟨ϵ(x⃗)⟩,
where ⟨· · · ⟩ denotes an average over many events in a
centrality class. We assume pointlike sources for simplic-
ity: ρ(|x⃗|) = δ(x⃗). The last free parameter in our model
is the number of independent sources N . One expects
that this number scales typically like the number of par-
ticipant nucleons in a collision. However, participants are
not independent, but strongly correlated: for each par-
ticipant of the projectile, there is by definition at least
one participant from the target which is close enough in
the transverse plane for a collision to occur. Neverthe-
less, it is plausible that the system behaves like a set of
N independent clusters of two or more nucleons. Again
for simplicity, we use N = 0.45Npart for all centralities,
though one could make the agreement with Monte-Carlo
even better by fitting N for each centrality class. In-
creasing N by 20% typically decreases ε3{2} and ε1{2}
by 10%, and ε2{2} by less than 4%. If one uses a larger
value of N for peripheral collisions (say, N = 0.6Npart

instead of N = 0.45Npart), agreement with Monte-Carlo
is significantly better for ε1{2} and ε3{2} but slightly
worse for ε2{2}.
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FIG. 1. (Color online) εn{2}, with n = 1, 2, 3, versus central-
ity. Symbols are Monte-Carlo results, lines are our analytic
results for independent sources. For ε2{2}, the dashed line is
the full result to order 1/N (Eq. (12)), while the solid line is
the standard eccentricity (first term in the right-hand side of
Eq. (12)).
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Diffusion, 3+1D Hydro: Schenke, Gale, Jeon3+1 E by E viscous hydro simulations by Schenke et al
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FIG. 1: (Color online) Energy density distribution in the transverse plane for one event with b = 2.4 fm at the initial time
(left), and after � = 6 fm/c for the ideal case (middle) and with �/s = 0.16 (right).

In this study, we found that setting the local viscosity
to zero when finite viscosity causes negative pressure in
the cell as advocated in [25] and reducing the ideal part
by 5% works well to stabilize the calculations without
introducing spurious e�ects.

While in standard hydrodynamic simulations with av-
eraged initial conditions all odd flow coe�cients vanish
by definition, fluctuations generate triangular flow v3 as
a response to the finite initial triangularity.

We follow [15] and define an event plane through the
angle

�n =
1

n
arctan

hpT sin(n�)i
hpT cos(n�)i , (9)

where the weight pT is chosen for best accuracy [26].
Then, the flow coe�cients can be computed using

vn = hcos(n(�� �n))i . (10)

The initialization of the energy density is done using
a Glauber Monte-Carlo model (see [27]): Before the col-
lision the density distribution of the two nuclei is de-
scribed by a Woods-Saxon parametrization, which we
sample to determine the positions of individual nucleons.
The impact parameter is sampled from the distribution
P (b)db = 2bdb/(b2

max�b2
min), where bmin and bmax depend

on the given centrality class. Then we determine the dis-
tribution of binary collisions and wounded nucleons. Two
nucleons are assumed to collide if their relative transverse
distance is less than D =

�
�NN/⇡, where �NN is the in-

elastic nucleon-nucleon cross-section, which at top RHIC
energy of

�
s = 200AGeV is �NN = 42 mb. The energy

density is distributed proportionally to the wounded nu-
cleon distribution. For every wounded nucleon we add a
contribution to the energy density with Gaussian shape
(in x and y) and width �0 = 0.4 fm. In the rapidity
direction, we assume the energy density to be constant
on a central plateau and fall like half-Gaussians at large
|⌘s| (see [16]). This procedure generates flux-tube like
structures compatible with measured long-range rapidity
correlations [28–30]. The absolute normalization is deter-
mined by demanding that the obtained total multiplicity
distribution reproduces the experimental data.

As equation of state we employ the parametrization
“s95p-v1” from [31], obtained from interpolating between
lattice data and a hadron resonance gas.

In Fig. 1 we show the energy density distribution in
the transverse plane for an event with impact parameter
b = 2.4 fm at the initial time ⌧0 = 0.4 fm/c and at time
⌧ = 6 fm/c for ⌘/s = 0 and ⌘/s = 0.16. This clearly
shows the e�ect of dissipation.

We perform a Cooper-Frye freeze-out using

E
dN

d3p
=

dN

dypT dpT d�p
= gi

�

�

f(uµpµ)pµd3�µ , (11)

where gi is the degeneracy of particle species i, and �
the freeze-out hyper-surface. In the ideal case the distri-
bution function is given by

f(uµpµ) = f0(u
µpµ) =

1

(2⇡)3
1

exp((uµpµ � µi)/TFO) ± 1
,

(12)
where µi is the chemical potential for particle species
i and TFO is the freeze-out temperature. In the finite
viscosity case we include viscous corrections to the dis-
tribution function, f = f0 + �f , with

�f = f0(1 ± f0)p
�p�W��

1

2(� + P)T 2
, (13)

where W is the viscous correction introduced in Eq. (5).
Note that the choice �f ⇠ p2 is not unique [32].

The algorithm used to determine the freeze-out surface
� has been presented in [16]. It is very e�cient in de-
termining the freeze-out surface of a system with fluctu-
ating initial conditions. To demonstrate this, we present
the freeze-out surface in the x-⌧ -plane in the vicinity of
y = 0 fm and ⌘s = 0 for two di�erent initial distribu-
tions compared to that for an averaged initial condition
in Fig. 2. The arrows are projections of the normal vector
on the hyper-surface element onto the x-⌧ plane.

We include resonances up to the �-meson. We found
that the pseudorapidity dependence of both v2 and v3 is
a�ected notably by the inclusion of resonance decays, im-
proving the agreement of v2(⌘p) with data significantly.
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FIG. 1: (Color online) Energy density distribution in the transverse plane for one event with b = 2.4 fm at the initial time
(left), and after � = 6 fm/c for the ideal case (middle) and with �/s = 0.16 (right).

In this study, we found that setting the local viscosity
to zero when finite viscosity causes negative pressure in
the cell as advocated in [25] and reducing the ideal part
by 5% works well to stabilize the calculations without
introducing spurious e�ects.

While in standard hydrodynamic simulations with av-
eraged initial conditions all odd flow coe�cients vanish
by definition, fluctuations generate triangular flow v3 as
a response to the finite initial triangularity.

We follow [15] and define an event plane through the
angle

�n =
1

n
arctan

hpT sin(n�)i
hpT cos(n�)i , (9)

where the weight pT is chosen for best accuracy [26].
Then, the flow coe�cients can be computed using

vn = hcos(n(�� �n))i . (10)

The initialization of the energy density is done using
a Glauber Monte-Carlo model (see [27]): Before the col-
lision the density distribution of the two nuclei is de-
scribed by a Woods-Saxon parametrization, which we
sample to determine the positions of individual nucleons.
The impact parameter is sampled from the distribution
P (b)db = 2bdb/(b2

max�b2
min), where bmin and bmax depend

on the given centrality class. Then we determine the dis-
tribution of binary collisions and wounded nucleons. Two
nucleons are assumed to collide if their relative transverse
distance is less than D =

�
�NN/⇡, where �NN is the in-

elastic nucleon-nucleon cross-section, which at top RHIC
energy of

�
s = 200AGeV is �NN = 42 mb. The energy

density is distributed proportionally to the wounded nu-
cleon distribution. For every wounded nucleon we add a
contribution to the energy density with Gaussian shape
(in x and y) and width �0 = 0.4 fm. In the rapidity
direction, we assume the energy density to be constant
on a central plateau and fall like half-Gaussians at large
|⌘s| (see [16]). This procedure generates flux-tube like
structures compatible with measured long-range rapidity
correlations [28–30]. The absolute normalization is deter-
mined by demanding that the obtained total multiplicity
distribution reproduces the experimental data.

As equation of state we employ the parametrization
“s95p-v1” from [31], obtained from interpolating between
lattice data and a hadron resonance gas.

In Fig. 1 we show the energy density distribution in
the transverse plane for an event with impact parameter
b = 2.4 fm at the initial time ⌧0 = 0.4 fm/c and at time
⌧ = 6 fm/c for ⌘/s = 0 and ⌘/s = 0.16. This clearly
shows the e�ect of dissipation.

We perform a Cooper-Frye freeze-out using

E
dN

d3p
=

dN

dypT dpT d�p
= gi

�

�

f(uµpµ)pµd3�µ , (11)

where gi is the degeneracy of particle species i, and �
the freeze-out hyper-surface. In the ideal case the distri-
bution function is given by

f(uµpµ) = f0(u
µpµ) =

1

(2⇡)3
1

exp((uµpµ � µi)/TFO) ± 1
,

(12)
where µi is the chemical potential for particle species
i and TFO is the freeze-out temperature. In the finite
viscosity case we include viscous corrections to the dis-
tribution function, f = f0 + �f , with

�f = f0(1 ± f0)p
�p�W��

1

2(� + P)T 2
, (13)

where W is the viscous correction introduced in Eq. (5).
Note that the choice �f ⇠ p2 is not unique [32].

The algorithm used to determine the freeze-out surface
� has been presented in [16]. It is very e�cient in de-
termining the freeze-out surface of a system with fluctu-
ating initial conditions. To demonstrate this, we present
the freeze-out surface in the x-⌧ -plane in the vicinity of
y = 0 fm and ⌘s = 0 for two di�erent initial distribu-
tions compared to that for an averaged initial condition
in Fig. 2. The arrows are projections of the normal vector
on the hyper-surface element onto the x-⌧ plane.

We include resonances up to the �-meson. We found
that the pseudorapidity dependence of both v2 and v3 is
a�ected notably by the inclusion of resonance decays, im-
proving the agreement of v2(⌘p) with data significantly.
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FIG. 1: (Color online) Energy density distribution in the transverse plane for one event with b = 2.4 fm at the initial time
(left), and after � = 6 fm/c for the ideal case (middle) and with �/s = 0.16 (right).

In this study, we found that setting the local viscosity
to zero when finite viscosity causes negative pressure in
the cell as advocated in [25] and reducing the ideal part
by 5% works well to stabilize the calculations without
introducing spurious e�ects.

While in standard hydrodynamic simulations with av-
eraged initial conditions all odd flow coe�cients vanish
by definition, fluctuations generate triangular flow v3 as
a response to the finite initial triangularity.

We follow [15] and define an event plane through the
angle

�n =
1

n
arctan

hpT sin(n�)i
hpT cos(n�)i , (9)

where the weight pT is chosen for best accuracy [26].
Then, the flow coe�cients can be computed using

vn = hcos(n(�� �n))i . (10)

The initialization of the energy density is done using
a Glauber Monte-Carlo model (see [27]): Before the col-
lision the density distribution of the two nuclei is de-
scribed by a Woods-Saxon parametrization, which we
sample to determine the positions of individual nucleons.
The impact parameter is sampled from the distribution
P (b)db = 2bdb/(b2

max�b2
min), where bmin and bmax depend

on the given centrality class. Then we determine the dis-
tribution of binary collisions and wounded nucleons. Two
nucleons are assumed to collide if their relative transverse
distance is less than D =

�
�NN/⇡, where �NN is the in-

elastic nucleon-nucleon cross-section, which at top RHIC
energy of

�
s = 200AGeV is �NN = 42 mb. The energy

density is distributed proportionally to the wounded nu-
cleon distribution. For every wounded nucleon we add a
contribution to the energy density with Gaussian shape
(in x and y) and width �0 = 0.4 fm. In the rapidity
direction, we assume the energy density to be constant
on a central plateau and fall like half-Gaussians at large
|⌘s| (see [16]). This procedure generates flux-tube like
structures compatible with measured long-range rapidity
correlations [28–30]. The absolute normalization is deter-
mined by demanding that the obtained total multiplicity
distribution reproduces the experimental data.

As equation of state we employ the parametrization
“s95p-v1” from [31], obtained from interpolating between
lattice data and a hadron resonance gas.

In Fig. 1 we show the energy density distribution in
the transverse plane for an event with impact parameter
b = 2.4 fm at the initial time ⌧0 = 0.4 fm/c and at time
⌧ = 6 fm/c for ⌘/s = 0 and ⌘/s = 0.16. This clearly
shows the e�ect of dissipation.

We perform a Cooper-Frye freeze-out using

E
dN

d3p
=

dN

dypT dpT d�p
= gi

�

�

f(uµpµ)pµd3�µ , (11)

where gi is the degeneracy of particle species i, and �
the freeze-out hyper-surface. In the ideal case the distri-
bution function is given by

f(uµpµ) = f0(u
µpµ) =

1

(2⇡)3
1

exp((uµpµ � µi)/TFO) ± 1
,

(12)
where µi is the chemical potential for particle species
i and TFO is the freeze-out temperature. In the finite
viscosity case we include viscous corrections to the dis-
tribution function, f = f0 + �f , with

�f = f0(1 ± f0)p
�p�W��

1

2(� + P)T 2
, (13)

where W is the viscous correction introduced in Eq. (5).
Note that the choice �f ⇠ p2 is not unique [32].

The algorithm used to determine the freeze-out surface
� has been presented in [16]. It is very e�cient in de-
termining the freeze-out surface of a system with fluctu-
ating initial conditions. To demonstrate this, we present
the freeze-out surface in the x-⌧ -plane in the vicinity of
y = 0 fm and ⌘s = 0 for two di�erent initial distribu-
tions compared to that for an averaged initial condition
in Fig. 2. The arrows are projections of the normal vector
on the hyper-surface element onto the x-⌧ plane.

We include resonances up to the �-meson. We found
that the pseudorapidity dependence of both v2 and v3 is
a�ected notably by the inclusion of resonance decays, im-
proving the agreement of v2(⌘p) with data significantly.

Initial Final Ideal Final Visc.

Higher harmonics are damped most by viscosity



Longitudinal Initial Conditions

Centrality dependence of the pseudorapidity density 7
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Fig. 2: dNch/dh per centrality bin from each of the three detectors used. The error bars correspond to the total
statistical and systematic error.
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Fig. 3: Combined dNch/dh result per centrality bin. The error bars (gray boxes) show the total statistical and
systematic error of the combined result. The open squares indicate the previously published ALICE result near
mid-rapidity [16]. Published results from other LHC experiments [9, 10] which have the same centrality as the
ALICE measurement are also shown.

Longitudinal energy density is (almost) frozen during the evolution



The hydrodynamic expansion



1D to 3D transition: Huichao Song (circa 2008)

August 17, 2009 9:10 WSPC/INSTRUCTION FILE hydro

24 Derek A. Teaney

1 10
τ(fm/c)

0.1

1

10

100

s(
fm

-3
)

viscous (1+1)-d hydro
ideal (1+1)-d hydro
viscous (0+1)-d hydro
ideal (0+1)-d hydro

r=0 fm

r=3fm τ
−1

Cu+Cu, b=0 fm
EOS I

X0.5

**

**

Fig. 13. Figure from Ref.9 showing the entropy density (s) in CuCu simulations as a function

of proper time ⌧ using ideal and viscous hydrodynamics. The top set of lines shows the entropy
in the center of the nucleus-nucleus collision, (r = 0 fm), and the bottom set of lines shows the

analogous curves closer to the edge (r = 3 fm). During an initial one dimensional expansion the

entropy density decreases as s / 1/⌧ . Subsequently the entropy decreases as s / 1/⌧3 when the
expansion becomes three dimensional at a time, ⌧ ⇠ 5 fm. The lines labeled by (0 + 1) ideal and

(0 + 1) viscous are representative of the ideal and viscous Bjorken results Eq. (42) and Eq. (55)

respectively.

Quantity 1D Expansion 3D Expansion

T
�

1
⌧

�1/3÷1/4 �
1
⌧

�1÷3/4

s / T 3
�

1
⌧

�1÷3/4 �
1
⌧

�3÷9/4

Table 1. Dependence of temperature and entropy as a function of time in a 1D and 3D expansion.

The indicated range, for instance 1/3÷1/4, is an estimate of how extreme non-equilibrium e↵ects

could modify the ideal power from 1/3 to 1/4.

be rewritten as spatial derivatives. First the stress tensor is decomposed into ideal

and viscous pieces

Tµ⌫ = Tµ⌫
ideal + ⇡µ⌫ + ⇧�µ⌫ , (51)

where Tµ⌫
id is the ideal stress tensor (Eq. (30)) and ⇧ is the bulk stress. ⇡µ⌫ is

the symmetric traceless shear tensor and satisfies the orthogonality constraint,

⇡µ⌫u⌫ = 0. The equations of motion are the conservation laws @µTµ⌫ = 0 to-

gether with a constituent relation. The constituent relation expands ⇡µ⌫ and ⇧

in terms gradients of the conserved charges T 00 and T 0i or their thermodynamic

conjugates, temperature T and four velocity uµ . To first order in this expansion,
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FIG. 5: (Color online) Surfaces of constant temperature T and constant transverse flow velocity v⊥ for central Cu+Cu collisions,
evolved with EOS I (left panel) and SM-EOS Q (right panel). In each panel, results from viscous hydrodynamics in the left
half are directly compared with the corresponding ideal fluid evolution in the right half. (The thin isotherm contours in the
right halves of each panel are reflected from the left halves, for easier comparison.) The lines of constant v⊥ are spaced by
intervals of 0.1, from the inside outward, as indicated by the numbers near the top of the figures. The right panel contains
two isotherms for Tc =164 MeV, one separating the mixed phase (MP) from the QGP at energy density eQ = 1.6 GeV/fm3, the
other separating it from the hadron resonance gas (HRG) at energy density eH =0.45 GeV/fm3. See text for discussion.
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FIG. 6: (Color online) Time evolution of the average radial flow velocity 〈vT 〉 ≡ 〈v⊥〉 in central Cu+Cu collisions, calculated
with EOS I (left panel) and SM-EOS Q (right panel). Solid (dashed) lines show results from ideal (viscous) fluid dynamics.
The initially faster rate of increase reflects large positive shear viscous pressure in the transverse direction at early times. The
similar rates of increase at late times indicate the gradual disappearance of shear viscous effects. In the right panel, the curves
exhibit a plateau from 2 to 4 fm/c, reflecting the softening of the EOS in the mixed phase.

B. Final particle spectra

After obtaining the freeze-out surface, we calculate the
particle spectra from the generalized Cooper-Frye for-
mula (12), using the AZHYDRO algorithm [41] for the
integration over the freeze-out surface Σ. For calcula-
tions with EOS I which lacks the transition from mass-
less partons to hadrons, we cannot compute any hadron
spectra. For illustration we instead compute the spectra

of hypothetical massless bosons (“gluons”). They can be
compared with the pion spectra from SM-EOS Q which
can also, to good approximation, be considered as mass-
less bosons.

The larger radial flow generated in viscous hydrody-
namics, for a fixed set of initial conditions, leads, of
course, to flatter transverse momentum spectra [30, 33,
34] (at least at low pT where the viscous correction δfi

to the distribution function can be neglected in (12)).
This is seen in Figure 7, by comparing the dotted and



Phase space distributions:



Fluctuations in Lattice QCD: arXiv:1112.4416

Lattice / Steffan Boltzmann (SB)
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Figure 6. Left panel: isospin susceptibility as a function of the temperature. Right panel: electric

charge susceptibility as a function of the temperature. In both panels, the different dots correspond

to different Nt values. The red band is the continuum extrapolation. The black curve is the HRG

model prediction for these observables. The dashed line shows the ideal gas limit.
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temperatures it agrees with the HRG model result, and it shows a rapid rise across the

transition. It reaches the ideal gas limit much faster than the other observables under

study, yet there is a window of about 100 MeV above Tc, where its value is still smaller

than one. In analogy with χus
11, this observable also gives us information on bound state

survival above Tc.

For convenience we tabulate our continuum results in Table 1.

– 10 –

Agrees with HRG up to T ' 150 MeV



Viscous corrections to v2 due to δf
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FIG. 2: Left: v2(pT ) using the Linear or Quadratic Ansätze for the distribution function. Right: In-

tegrated v2 versus centrality showing independence from the precise form of the viscous correction.

Run parameters can be found in Fig. 1.

There are two limiting cases for the functional form of the the relaxation time approx-

imation, α = 0 and α = 1. The momentum dependence of the relaxation time in these

extreme cases is

τR(p) ∝
{

p α = 0 (quadratic ansatz),

const α = 1 (linear ansatz).
(19)

Most theories will lie between these two extreme limits.3 Loosely speaking, if the energy loss

of high momentum particles grows linearly with momentum, dp
dt

∝ p one expects a relaxation

time independent of momentum, τR ∝ p0. On the other hand if the energy loss approaches

a constant dp
dt

∝ const, the relaxation time will grow with the particle momentum τR ∝ p.

Fig. 2 shows the elliptic flow computed using these two functional forms for the first

viscous correction. It is important to emphasize that shear viscosity is the same in both

cases. Examining these figures, we see that the integrated elliptic flow is largely insensitive

to the functional form of the first viscous correction. This is because the integrated v2 is

primarily determined by the hydrodynamic variables e, uµ,πµν which are independent of the

functional dependence of the relaxation time [27]. The differential elliptic flow v2(pT ) is

sensitive to the rate of equilibration especially above pT " 1.2 GeV.

B. Scalar λφ4 theory

Scalar field theory has been described at length by Jeon [28], who rigorously derived the

Boltzmann equation and its collision kernel and then solved for χ(p̃) numerically. But if we

3 There are exceptions to this rule. For instance, in a gas of Goldstone bosons far below the symmetry

breaking scale one expects α = 2, since the cross section grows rapidly with energy, σ ∼ E2/Λ4.

7



Particle correlations
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Inclusive two particle correlation functions – STAR DATA

C(∆φ,∆η) =
1

〈Npairs〉

〈
dNpairs

d∆φd∆η

〉
∆φ = φ1−φ2, ∆η = η1−η2.

Comparison to published data

arXiv:0806.0513 PRL 104, 06230 (2010)

Published correlation 
data (STAR, PHOBOS) 
show v3 component!

Flow contribution to 
long-range “ridge” and 

“broad away-side”

This is purely a fluctuation 
effect - no fluctuations, no v3!

Inclusive correlations Triggered correlations

n.b. !2 and !3 are uncorrelated - triangular 
flow is not visible in v2 event plane analysis 

Burak Alver, GR, arXiv:1003.0194 (PRC in press)

(after v2 subtraction)

(before v2 subtraction)

Fit
Mostly v2

Fit C(∆φ,∆η) with a fourier series to determine 〈v22〉 and 〈v23〉 etc



PROJECT

DATE CLIENTSPRING 2011 HEAVY ION COMMUNITY

THE PB+PB RIDGE
ALICE, ATLAS, CMS

15

q6

0
2

4 d6-4
-2

0
2

4

0.99
1

1.01
1.02

0-1%

q6

0
2

4 d6-4
-2

0
2

4

1

1.02

0-5%

q6

0
2

4 d6-4
-2

0
2

4
0.98

1

1.02

1.04

5-10%

q6

0
2

4 d6-4
-2

0
2

4
0.95

1

1.05

1.1

10-20%

q6

0
2

4 d6-4
-2

0
2

4

1

1.1

20-30%

q6

0
2

4 d6-4
-2

0
2

4
0.9

1

1.1

1.2

30-40%

q6

0
2

4 d6-4
-2

0
2

4
0.9

1

1.1

1.2

40-50%

q6

0
2

4 d6-4
-2

0
2

4
0.9

1

1.1

50-60%

q6

0
2

4 d6-4
-2

0
2

4

0.9

1

1.1

60-70%

q6

0
2

4 d6-4
-2

0
2

4

0.9

1

1.1

1.2

70-80%

q6

0
2

4 d6-4
-2

0
2

4

0.8

1

1.2

1.4

80-90%

ATLAS

=2.76 TeVNNsPb-Pb 
-1bµ= 8 intL

 < 3 GeVb
T

, pa
T

2 < p

)d
6, q

6
C

(

ATLAS, PRC 86 014907 (2012)

Head On Collisions

Peripheral Collisions

Mostly v3



A very complete hydrodynamic simulation 3+1D: Schenke, Jeon, Gale, Venugopalan

Flow and Viscosity in Relativistic Heavy Ion Collisions 30

-6
-4

-2
 0

 2
 4

 6 -6
-4

-2
 0

 2
 4

 6

τ=0.01 fm/c

x [fm] y [fm]

 0

 400

 800

 1200

ε [
G

eV
/fm

3 ]

-6
-4

-2
 0

 2
 4

 6 -6
-4

-2
 0

 2
 4

 6

τ=0.2 fm/c

x [fm] y [fm]

 0

 100

 200

 300

ε [
G

eV
/fm

3 ]

-12
-9

-6
-3

 0
 3

 6
 9

 12 -12
-9

-6
-3

 0
 3

 6
 9

 12

τ=5.2 fm/c

x [fm] y [fm]

 0
 0.2
 0.4
 0.6
 0.8

ε [
G

eV
/fm

3 ]
Figure 1: Typical transverse energy density profiles e(x, y) from the IP-Glasma model (74) for a semiperiph-

eral (b= 8 fm) Au+Au collision at
√

s= 200A GeV, at times τ = 0.01, 0.2, and 5.2 fm/c. From τ = 0.01 fm/c

to 0.2 fm/c the fireball evolves out of equilibrium according to the Glasma model (68–71); at τ = 0.2 fm/c

the energy momentum tensor from the IP-Glasma evolution is Landau-matched to ideal fluid form (for

technical reasons (66) the viscous pressure components are set to zero at the matching time) and henceforth

evolved with viscous Israel-Stewart fluid dynamics, assuming η/s = 0.12 for the specific shear viscosity. The

pre-equilibrium Glasma evolution is seen to somewhat wash out the large initial energy density fluctuations.

The subsequent viscous hydrodynamic evolution further smoothes these fluctuations. The asymmetric pres-

sure gradients due to the prominent dipole asymmetry in the initial state of this particular event (visible

as a left-right asymmetry of the density profile in the left panel) is seen to generate a dipole (“directed

flow”) component in the hydrodynamic flow pattern that pushes matter towards the right during the later

evolution stages.
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Figure 2: Primordial fluctuation power spectrum of the Little Bangs created in

2.76 ATeV Pb+Pb collisions of different centralities, from three different initial-

state models (IP-Sat, MC-Glauber, MC-KLN).
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measured by STAR compared to hydrodynamic calculations with different eccentricities and η/s.
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Figure 9: (a) The centrality dependence of vn{2} from 2.76 ATeV Pb+Pb collisions measured by AL-

ICE (125) compared to viscous hydrodynamic model calculations (66). (b) Comparison of vn(pT ) for

the same collision system at 20−30% centrality from ATLAS (126) with hydrodynamical calculations,

using both a constant average and a temperature dependent η/s (66).

Initial  Conditions Result

Hopefully I have opened the box!
Thank You!


