

Hydrodynamics: state of the art

Chun Shen Brookhaven National Lab

Jan. 6, 2018 LBNL

JETSCAPE Winter Workshop

A blowing wind from hydrodynamics

JETSCAPE Winter Workshop 2018

Identified particle spectra

S. McDonald, C. Shen, F. Fillion-Gourdeau, S. Jeon and C. Gale, Phys. Rev. C 95, 064913 (2017)

 Hydrodynamic simulations can describe a zoo of identified particle spectra within 30% accuracy

Anisotropic flow

Charged hadron vn at the LHC

S. McDonald, C. Shen, F. Fillion-Gourdeau, S. Jeon and C. Gale, Phys. Rev. C 95, 064913 (2017)

- Hydrodynamics can fit and predict anisotropic flow v_{n}
- The conversion rate of initial spatial eccentricity to final momentum anisotropy is controlled by the transport properties of the QGP

Extraction the QGP transport property

J. E. Bernhard, J. S. Moreland, S. A. Bass, J. Liu and U. Heinz, Phys. Rev. C 94, 024907 (2016)

 Hydrodynamic framework is coupled with the Bayesian statistical analysis to provide the stateof-the-art extraction of the QGP shear viscosity

Universal hydrodynamic response

System size dependence of vn

Bjoern Schenke, Chun Shen, and Prithwish Tribedy, in preparation

 The IP-Glasma + hydrodynamic framework can reproduce charged hadron v_n{2} from central to peripheral collisions

- The ratio of $v_2{4}/v_2{2}$ measures $v_2{4}$ the variance of the v_2 fluctuations $v_2{4}$
- The IP-Glasma initial condition captures the v₂ fluctuations from central to peripheral centralities

- The ratio of $v_2{4}/v_2{2}$ measures $\frac{v_2{4}}{v_2{2}}$ the variance of the v_2 fluctuations $\frac{v_2{4}}{v_2{2}}$
- The IP-Glasma initial condition captures the v₂ fluctuations from central to peripheral centralities

- The ratio of $v_2{4}/v_2{2}$ measures $v_2{4}$ the variance of the v_2 fluctuations $v_2{2}$
- A larger v_2 fluctuation is in pPb collisions compared to the larger XeXe and PbPb collisions at a same $dN^{\rm ch}/d\eta$

 $\frac{1 - (\sigma^2 / \bar{v}_2^2)}{2}$

The difference between v₂{4} and v₂{6}
 raises from the skewness of the v₂ distribution

- The difference between v₂{4} and v₂{6}
 raises from the skewness of the v₂ distribution
- The IP-Glasma + hydrodynamic framework reproduces the v₂{6}/v₂{4} ratio for PbPb collisions

- The difference between v₂{4} and v₂{6}
 raises from the skewness of the v₂ distribution
- The IP-Glasma + hydrodynamic framework reproduces the v₂{6}/v₂{4} ratio for PbPb collisions

- The difference between $v_2{4}$ and $v_2{6}$ raises from the skewness of the v_2 distribution
- More statistics is needed for comparisons among p+Pb, Xe+Xe, and Pb+Pb collisions at small $dN^{\rm ch}/d\eta$

Exploring the phases of QCD

- Event-by-event fluctuating initial conditions and pre-equilibrium evolution
- (3+1)-d dissipative hydrodynamics with conserved charge currents
- Detailed microscopic description for hadronic phase

When to start hydrodynamics?

- Nuclei overlapping time is large at low collision energy
- Pre-equilibrium dynamics can play an important role

Go beyond the Bjorken approximation

• The finite widths of the colliding nuclei are taken into account

The interaction zone is not point like

 $y \neq \eta_s$

need full 3D **spatial** and **momentum** information

The 3D MC-Glauber model

 Collision time and 3D spatial position are determined for every binary collision

The 3D MC-Glauber model

- Collision time and 3D spatial position are determined for every binary collision
- QCD strings are randomly produced from collision points

The 3D MC-Glauber model

- Collision time and 3D spatial position are determined for every binary collision
- QCD strings are randomly produced from collision points

A. Bialas, A. Bzdak and V. Koch, arXiv:1608.07041 [hep-ph]

• These strings are decelerated with a constant string tension $\sigma = 1 \, GeV/fm$ before thermalized to medium

String space-time distribution

String space-time distribution

String space-time distribution

Hydrodynamics with sources

Energy-momentum current and net baryon density are feed into hydrodynamic simulation as source terms

$$\partial_{\mu}T^{\mu\nu} = J^{\nu}_{\text{source}}$$
$$\partial_{\mu}J^{\mu} = \rho_{\text{source}}$$

 $J_{\rm source}^{\nu} = \delta e u^{\nu} + (e+P) \delta u^{\nu}$

where

 $\delta u^{\nu} = \frac{\Delta^{\nu}_{\mu} J^{\mu}_{\text{source}}}{e+P}$ heats up the system accelerates the flow velocity $\rho_{\text{source}} \text{ dopes baryon charges into the system}$

 Source terms are smeared with Gaussians in space and time

Hydrodynamical evolution with sources

energy density

Hydrodynamical evolution with sources

net baryon density

Particle rapidity distribution

 Rapidity distribution of charged hadrons agrees fairly good with the RHIC BES measurements below 62.4 GeV

C. Shen and B. Schenke, arXiv:1710.00881 [nucl-th].

Particle rapidity distribution

- Rapidity distribution of charged hadrons agrees fairly good with the RHIC BES measurements below 62.4 GeV
- Net proton rapidity distributions are reasonably reproduced at low BES energy; but too low for high energies

Hydrodynamics with baryon diffusion

Dissipative hydrodynamics

C. Shen, G. Denicol, C. Gale, S. Jeon, A. Monnai, B. Schenke, in preparation Energy momentum tensor

$$T^{\mu\nu} = e u^{\mu} u^{\nu} - (P + \Pi) \Delta^{\mu\nu} + \pi^{\mu\nu} \qquad \Delta^{\mu\nu} = g^{\mu\nu} - u^{\mu} u^{\nu}$$

Conserved currents

Equations of motion

$$\begin{array}{l} \partial_{\mu}T^{\mu\nu} = 0 \\ \partial_{\mu}J^{\mu} = 0 \end{array} + P(e,n) \end{array}$$

Dissipative quantities are evolved with 2nd order Israel-Stewart type of equations

At Navier-Stokes limit,

$$\pi^{\mu\nu} \sim 2\eta \nabla^{\langle\mu} u^{\nu\rangle} \quad \Pi \sim -\zeta \partial_{\mu} u^{\mu} \quad q^{\mu} \sim \kappa \nabla^{\mu} \frac{\mu}{T}$$

 $\nabla^{\mu} = \Delta^{\mu\nu} \partial_{\nu}$

- The value of μ_B/T increases at low density regions
- The spatial gradients of μ_{B}/T drive the net baryon diffusion current to work against the hydrodynamic radial flow

- The value of μ_B/T increases at low density regions
- The spatial gradients of μ_{B}/T drive the net baryon diffusion current to work against the hydrodynamic radial flow

- The value of μ_B/T increases at low density regions
- The spatial gradients of μ_B/T drive the net baryon diffusion current to work against the hydrodynamic radial flow

- The value of μ_B/T increases at low density regions
- The spatial gradients of μ_{B}/T drive the net baryon diffusion current to work against the hydrodynamic radial flow

- The value of μ_B/T increases at low density regions
- The spatial gradients of μ_{B}/T drive the net baryon diffusion current to work against the hydrodynamic radial flow

- The value of μ_B/T increases at low density regions
- The spatial gradients of μ_{B}/T drive the net baryon diffusion current to work against the hydrodynamic radial flow

 More net baryon numbers are transported to midrapidity with a larger diffusion constant

Constraints on net baryon diffusion and initial condition

 More net baryon numbers are transported to midrapidity with a larger diffusion constant

Constraints on net baryon diffusion and initial condition

Conclusion

 Event-by-event viscous hydrodynamics is an effective macroscopic theory for high energy heavy-ion collisions

 We develop a dynamical initialization framework to study the early time evolution of heavy-ion collisions at the RHIC BES energies

Baryon stopping Mapping the QCD phase diagram