Jet shape variables: sensitive to energy loss fluctuations fluctuations?

Marco van Leeuwen, Nikhef, CERN

Inclusive/average vs jet-by-jet

- Intra-jet distributions ('fragmentation functions', radial profile) measure averages over a sample of jets
- Jet shape variables (mass, angularities, z_g etc): jet-by-jet quantity, in principle sensitive to fluctuations

Inclusive/average vs jet-by-jet

- Intra-jet distributions ('fragmentation functions', radial profile) measure averages over a sample of jets
- Jet shape variables (mass, angularities, z_g etc): jet-by-jet quantity, in principle sensitive to fluctuations

Fluctuations are expected to be large:

- geometric contribution; not all partons come from the center: path length fluctuations
- intrinsic fluctuations: E-loss is a stochastic process
 - Already for a single parton
 - Could be stronger effect in jets 'fat jets loose more energy'

Inclusive/average vs jet-by-jet

- Intra-jet distributions ('fragmentation functions', radial profile) measure averages over a sample of jets
- Jet shape variables (mass, angularities, z_g etc): jet-by-jet quantity, in principle sensitive to fluctuations

Fluctuations are expected to be large:

- geometric contribution; not all partons come from the center: path length fluctuations
- intrinsic fluctuations: E-loss is a stochastic process
 - Already for a single parton
 - Could be stronger effect in jets 'fat jets loose more energy'

Measuring fluctuations constrains these aspects of models !

Relation radial profile and RAA vs R

Relation radial profile and RAA vs R

Stronger peak at small r \Rightarrow decrease of R_{AA} with R for R < 0.2

Relation radial profile and RAA vs R

Stronger peak at small $r \Rightarrow$ decrease of R_{AA} with R for R < 0.2

Increase of ratio at large r (only with recoil): increase of R_{AA} for R > 0.4 (small effect because total momentum flow is small at large R)

Example: girth, radial profiles

mean *g* decreases

Large jet *R*: broadening mean *g* increases

g is measured jet by jet

Mean g corresponds to the profile measurement, width of distribution contains new information