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MOTIVATION: QCD JETS
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E ~ several fm

• soft & collinear divergences: resummation
• color coherence: angular ordering
• strong separation of time scales (semi-classical)

Dokshitzer,	Khoze,	Mueller,	Troyan	“Basics	of	Perturbative	QCD”	(1991)
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E ~ several fm

• soft & collinear divergences: resummation
• color coherence: angular ordering
• strong separation of time scales (semi-classical)

Goal of the lectures:
how does this object lose energy in the medium?

what is the effect of jet	multi-parton	fluctuations?

Dokshitzer,	Khoze,	Mueller,	Troyan	“Basics	of	Perturbative	QCD”	(1991)
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QUENCHING OF JETS
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We compute modifications to the jet spectrum in the presence of a dense medium. We show that in

the large-Nc approximation and at leading logarithmic accuracy the jet nuclear modification factor

factorizes into a quenching factor associated to the total jet color charge and a Sudakov suppression

factor which accounts for the energy loss of jet substructure fluctuations. This factor, called the

jet collimator, implements the fact that subjets, that are not resolved by the medium, lose energy

coherently as a single color charge, whereas resolved large angle fluctuations su↵er more quenching.

For comparison, we show that neglecting color coherence results in a stronger suppression of the jet

nuclear modification factor.

PACS numbers: 12.38.-t,24.85.+p,25.75.-q

The properties of fully reconstructed jets in heavy-ion
collisions [1–4] reveal the e↵ects of notable final state
interactions. They are currently actively investigated as
probes of the underlying deconfined hot matter produced
in these collisions. A remarkable observation is the strong
suppression of the jet yield which persists over a large
range of transverse momentum. In contrast, in-cone jet
modifications tend to decrease in the same variable [5–
7]. This challenges our understanding of the mechanisms
underlying jet modifications in the presence of a QCD
medium.

Jet quenching is commonly understood as the result of
medium-induced processes that carry energy away from
the jet. The amount of energy, ✏, lost by a jet in a dense
medium can be generically described by a probability
distribution P (✏), called the quenching weight. Hence,
the jet spectrum reads

d�med

dp2
T
dy

=

Z 1

0
d✏P (✏)

d�vac(pT + ✏)

dp2
T
dy

, (1)

where d�vac is the jet spectrum in vacuum. The quench-
ing probability distribution is expected to depend on the
medium properties, such as the jet quenching parameter
q̂, which is an in-medium di↵usion coe�cient in trans-
verse momentum space, and the medium length L [8],
but it should also be sensitive to jet scales, such as the
jet pT and cone size R.

The tools for analyzing jet quenching were developed
to account for radiative and elastic energy loss o↵ a single
color charge propagating in the medium [9–14], see also
the recent reviews [15, 16] and references therein. How-
ever, owing to the QCD mass singularity, the original
parton, which initiates the jet, tends to branch rapidly—
including inside the medium. This leads one to ques-

⇤Electronic address: ymehtar@uw.edu
†Electronic address: konrad.tywoniuk@cern.ch

tion the single charge energy loss approximation for jet
quenching at high-pT . Recently, the radiative energy loss
of color-connected subjets was shown to be sensitive to
interferences between the emitters [17]. As a result, in
the small-angle limit the system interacts coherently with
the medium only via the total charge, confirming earlier
expectations [18–21]. On the other hand, most Monte
Carlo implementations of quenching ignore possible inter-
ference e↵ects on jet energy loss and usually assume that
jet constituents lose energy independently. One may ex-
pect a substantial quantitative discrepancy between the
two pictures.
In vacuum, due to the well known cancellation of soft

and collinear singularities between real and virtual dia-
grams, higher-order corrections to the fully inclusive jet
spectrum are suppressed by powers of the coupling con-
stant [22, 23]. We point out that in the presence of a
dense medium the cancelation is not complete owing to
the mismatch between real splittings and virtual fluctu-
ations that are a↵ected di↵erently by energy loss pro-
cesses. This takes place whenever the medium resolves
the individual color charges created in an early vacuum
splitting. The mismatch generates potentially large log-
arithms that have to be resummed in a medium-driven
Sudakov suppression of the inclusive jet spectrum which
reflects the additional quenching of higher-order jet fluc-
tuations. Coherence e↵ects tend to moderate the e↵ect
by restoring the cancellation at small angles, due to the
limited resolution power of the medium.
The main focus of this Letter is to compute the e↵ect

of fluctuations of the jet substructure on the jet spectrum
Eq. (1). As will become clear in the moment, it is con-
venient to directly consider the ratio of the jet spectrum
in medium and the unmodified vacuum spectrum known
as the nuclear modification factor,

Rjet =

✓
d�med

dp2
T
dy

◆.✓
d�vac

dp2
T
dy

◆
. (2)

Furthermore, if one assumes a steeply falling power spec-

Q(pT ) =

✓
d�med

dp2Tdy

◆�✓
d�vac

dp2Tdy

◆

quenching	weight:	probability	distribution	of	radiating	energy	out-of-cone

quenching	factor	=	nuclear	modification	factor	
permits	an	expansion	in	the	strong	coupling	constant	(with	hard	scale)

- related by Laplace transform…

d�vac(pT + ✏)

dp2Tdy
' d�vac(pT )

dp2Tdy
exp

✓
�n✏

pT

◆
Q(pT ) = P̃

✓
n

pT

◆
⇒
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OUTLINE

• in-medium parton propagation

• medium-induced radiation

• one- & multi-parton energy loss

4
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IN-MEDIUM PROPAGATION

• dressed propagators: Dyson-Schwinger expansion
• high-energy approximation: only transverse 

momentum is exchanged with medium
- elastic energy loss suppressed

5
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INTERACTION WITH THE MEDIUM
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Ab,ν(p′ − p)

uλ(p) ūλ′(p
′)

Ab,ν(p′ − p)

εiµ(p) ε∗,jη (p′)
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′)

Ab,ν(p′ − p)
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ū�0(p0)
⇥
� ig /A(p� p0)

⇤
u�(p) ' �ig(2p+) ��,�0tbA�,b(q)
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Ab,ν(p′ − p)

uλ(p) ūλ′(p
′)

Ab,ν(p′ − p)

εiµ(p) ε∗,jη (p′)

ū�0(p0)
⇥
� ig /A(p� p0)

⇤
u�(p) ' �ig(2p+) ��,�0tbA�,b(q)

The same follows for the gluon vertex. We define interaction vertex

[Tb]ac ⌘ ifabcNotation for gluons:

This compact notation allows us to treat the propagation of quarks and gluons 
on an equal footing - differentiating only the color structure (high-energy 

approximation). We will only treat triple vertices for now.

uij(p0, p) = ig(2p+)
⇥
T ·A�⇤ �ij
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LC DECOMPOSITION
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P ⌘ (p+,p) ⌘ (E,p)

(2⇡)4�(p0 � p1) = (2⇡)3�(P0 � P1)

Z 1

�1
dt e�i(p�

0 �p�
1 )t

Explicit introduction of “time” on behalf of 4-momentum conservation; 
now “3(LC)”-momentum conserved!

In all vertices:
… …

X ⌘ (x+,x) ⌘ (t,x)
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LC DECOMPOSITION
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P ⌘ (p+,p) ⌘ (E,p)

(2⇡)4�(p0 � p1) = (2⇡)3�(P0 � P1)

Z 1

�1
dt e�i(p�

0 �p�
1 )t

Explicit introduction of “time” on behalf of 4-momentum conservation; 
now “3(LC)”-momentum conserved!

A�(q) = 2⇡�(q+)

Z 1

�1
dt e�iq�tA�(t, q)

Assumption: no longitudinal momentum exchange with the medium!
(medium is boosted in the opposite direction; has no extension in x- coordinate)

In all vertices:
… …

X ⌘ (x+,x) ⌘ (t,x)
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PROPAGATOR: TENSORIAL STRUCTURE
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S0(k) =
X

s

us(k)ūs(k)D0(k)

G0(k) = dµ⌫(k)D0(k)

dµ⌫(k) =
X

�=±1,0

(�1)�+1"µ�(k)"
⇤⌫
� (k) = gµ⌫ � kµn⌫ + k⌫nµ

k · n
In LC gauge:

n ·A ⌘ A+ = 0

⇤xD0(x, y) = i�(x� y)

D0(k) = �i/(k2 + i✏)

Fundamental propagator(s) in vacuum: 
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PROPAGATOR: TENSORIAL STRUCTURE
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S0(k) =
X

s

us(k)ūs(k)D0(k)

G0(k) = dµ⌫(k)D0(k)

dµ⌫(k) =
X

�=±1,0

(�1)�+1"µ�(k)"
⇤⌫
� (k) = gµ⌫ � kµn⌫ + k⌫nµ

k · n
In LC gauge:

n ·A ⌘ A+ = 0

⇤xD0(x, y) = i�(x� y)

D0(k) = �i/(k2 + i✏)

Fundamental propagator(s) in vacuum: 

Dyson-Schwinger construction

Gµ⌫(p0, p) = (2⇡)4�(p� p0)Gµ⌫
0 (p) +Gµ↵

0 (p0)T↵�(p
0, p)G�⌫

0 (p)

Tµ⌫(p
0, p) = uµ⌫(p

0, p) + uµ↵(p
0, p00)G↵�

0 (p00)u�⌫(p
00, p) + . . .
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DRESSED PROPAGATOR
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T ij = �ijT ⌘ �ij (T kk/2)Since the only components are:

Only transverse (physical) degrees of freedom are propagated. Problem 
reduces to finding the dressed scalar propagator that also follows from 

a DS equation. For “stitching together” Feynman diagrams, the mixed 
representation is very useful:

G0(t,p) ⌘ �2E

Z
dp�

2⇡
e�p�tD0(p) = ⇥(t)ei

p2

2E twhere is the retarded part (E>0).

Gµ⌫(p0, p) = dµi(p0)dj⌫(p) [��ijG(p0, p)] + instantaneous term

G(t0, E0,p0; t, E,p) = �2E

Z
dp0�

2⇡

Z
dp�

2⇡
e+ip�t�ip0�t0G(p0, p)

= 2⇡�(E � E0)G(t0,p0; t,p|E)
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DRESSED PROPAGATOR: FINAL FORM
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G(t0,p0; t,p) = (2⇡)2�(p� p0)G0(t
0 � t,p)

+ (ig)

Z t0

t
ds

Z

q
G0(t

0 � s,p0)[T ·A�](s, q)G(s,p0 + q; t,p)

In mixed representation (              ):
Z

q
⌘

Z
d2q

(2⇡)2

In coordinate representation (                     ):
Z

X
⌘

Z 1

�1
dt

Z
d2x

G(X;Y ) = G0(X;Y ) + (ig)

Z

Z
G0(X;Z)[T ·A�](Z)G(Z;Y )
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G(t0,p0; t,p) = (2⇡)2�(p� p0)G0(t
0 � t,p)

+ (ig)

Z t0

t
ds

Z

q
G0(t

0 � s,p0)[T ·A�](s, q)G(s,p0 + q; t,p)

In mixed representation (              ):
Z

q
⌘

Z
d2q

(2⇡)2

In coordinate representation (                     ):
Z

X
⌘

Z 1

�1
dt

Z
d2x

G(X;Y ) = G0(X;Y ) + (ig)

Z

Z
G0(X;Z)[T ·A�](Z)G(Z;Y )

G(X;Y ) =

Z r(t0)=x

r(t)=y
Dr exp

"
i
E

2

Z t0

t
ds ṙ2

#
U(t0, t; [r(s)])

U(t0, t; [r(s)]) = P+ exp

"
ig

Z t0

t
dsT ·A�(s, r)

#

Propagator	involves	a	Wilson	line.
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IN-MEDIUM FEYNMAN RULES
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t0 t1

p0, E p1, E

[Propagators going out of the medium are easily found.]

=
1

2E
G(t0,p0; t,p|E)

Propagator
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IN-MEDIUM FEYNMAN RULES
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[Only transverse degrees of freedom propagating = transverse vertices]

t

k, zE

p, E

2.3.1. Feynman rules in mixed representation

t1t0

p1, Ep0, E
=

1

2!
Gij(p1, t1; p0, t0|!) , (81)

t0 t1

p0, E p1, E
=

1

2!
G
ab(p1, t1; p0, t0|!) (82)

[KMT: Should we include the mass in the quark propagator?]

t

k, zE

p, E = V a
s,s0,�(; z) = �

2gta

z
p

1 � z
�s,s0

�
��,s + (1 � z)��,�s

�
 · "⇤

� , (83)

t

k, zE

p, E = V a
s,s0,�(; z) =

2gta

z
p

1 � z
�s,s0

�
��,s + (1 � z)��,�s

�
 · "⇤

� , (84)

t

k, zE

p, E = V a
s,s0,�(; z) = �

2gta

(1 � z)
p
z
�s,s0

�
��,s + z��,�s

�
 · "⇤

� , (85)

t

k, zE

p, E = V abc
ijk (, z) = 2gfabc


1

1 � z
k�ij +

1

z
j�ik � i�jk

�
, , (86)

t

k, zE

p, E = V a
�ss0(, z) = �

2gtap
z(1 � z)

��s0s [z��,s � (1 � z)��,�s] ✏� ·  (87)

[KMT: “Final” notation:

9

t

k, zE

p, E = �2g ta
1

z
p
1� z

�ss0 (��,s + (1� z)��,�s)
i

Vertices:	conservation	of	3-mom	&	integrate	out	time

 = k � zp

t0 t1

p0, E p1, E

[Propagators going out of the medium are easily found.]

=
1

2E
G(t0,p0; t,p|E)

Propagator
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[Only transverse degrees of freedom propagating = transverse vertices]
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Vertices:	conservation	of	3-mom	&	integrate	out	time
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[Propagators going out of the medium are easily found.]

=
1

2E
G(t0,p0; t,p|E)

Propagator
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HIGH-ENERGY EXPANSION
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The classical path between the endpoints is simply xcl(s) = y +
s� t

t0 � t
(x� y)The classical path between the endpoints is simplyThe classical path between the endpoints is simply

Expanding around this trajectory, the zeroth term reads:

G(X,Y ) ⇡ G0(X,Y )U(t0, t; [xcl(s)])

This describes color precession (no momentum broadening) along the trajectory. 
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HIGH-ENERGY EXPANSION

12

The classical path between the endpoints is simply xcl(s) = y +
s� t

t0 � t
(x� y)The classical path between the endpoints is simplyThe classical path between the endpoints is simply

Expanding around this trajectory, the zeroth term reads:

G(X,Y ) ⇡ G0(X,Y )U(t0, t; [xcl(s)])

This describes color precession (no momentum broadening) along the trajectory. 

In mixed representation, E≫1/(t’-t) (“localization”):

G(t0,p0; t,p) = (2⇡)2�(p� p0)G0(t
0 � t,p)U(t0, t; [ns])

where n ⌘ p/E

We call this the “tilted” Wilson line. We use these propagators to 
describe hard (energetic, “vacuum-like”) particles that act as sources 

for medium-induced radiation.
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BROADENING 1

13

Our first Feynman diagram! 😀

Mi(P ) =

Z

p0

G(L,p; 0,p0)
ijMj(P0)

d�

d⌦p
=

1

Nc
nf

X

s

h|M|2i The cross section involves averaging out medium 
fluctuations. Need knowledge about the 2-point 

correlator in the medium:d⌦p =
1

4⇡

d!

!

d2p

(2⇡)2

2.3.1. Feynman rules in mixed representation

t1t0

p1, Ep0, E
=

1

2!
Gij(p1, t1; p0, t0|!) , (81)

t0 t1

p0, E p1, E
=

1

2!
G
ab(p1, t1; p0, t0|!) (82)

[KMT: Should we include the mass in the quark propagator?]

t

k, zE

p, E = V a
s,s0,�(; z) = �

2gta

z
p

1 � z
�s,s0

�
��,s + (1 � z)��,�s

�
 · "⇤

� , (83)

t

k, zE

p, E = V a
s,s0,�(; z) =

2gta

z
p

1 � z
�s,s0

�
��,s + (1 � z)��,�s

�
 · "⇤

� , (84)

t

k, zE

p, E = V a
s,s0,�(; z) = �

2gta

(1 � z)
p
z
�s,s0

�
��,s + z��,�s

�
 · "⇤

� , (85)

t

k, zE

p, E = V abc
ijk (, z) = 2gfabc


1

1 � z
k�ij +

1

z
j�ik � i�jk

�
, , (86)

t

k, zE

p, E = V a
�ss0(, z) = �

2gtap
z(1 � z)

��s0s [z��,s � (1 � z)��,�s] ✏� ·  (87)

[KMT: “Final” notation:

9

L0
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hAa,�(t0, q0)A⇤b,�(t, q)i = �abn(t)�(t� t0)(2⇡)2�(q � q0)�(q)

[Background field is real!]

2.3.1. Feynman rules in mixed representation

t1t0

p1, Ep0, E
=

1

2!
Gij(p1, t1; p0, t0|!) , (81)

t0 t1

p0, E p1, E
=

1

2!
G
ab(p1, t1; p0, t0|!) (82)

[KMT: Should we include the mass in the quark propagator?]

t

k, zE

p, E = V a
s,s0,�(; z) = �

2gta

z
p

1 � z
�s,s0

�
��,s + (1 � z)��,�s

�
 · "⇤

� , (83)

t

k, zE

p, E = V a
s,s0,�(; z) =

2gta

z
p

1 � z
�s,s0

�
��,s + (1 � z)��,�s

�
 · "⇤

� , (84)

t

k, zE

p, E = V a
s,s0,�(; z) = �

2gta

(1 � z)
p
z
�s,s0

�
��,s + z��,�s

�
 · "⇤

� , (85)

t

k, zE

p, E = V abc
ijk (, z) = 2gfabc


1

1 � z
k�ij +

1

z
j�ik � i�jk

�
, , (86)

t

k, zE

p, E = V a
�ss0(, z) = �

2gtap
z(1 � z)

��s0s [z��,s � (1 � z)��,�s] ✏� ·  (87)

[KMT: “Final” notation:

9

L0

The calculation involves the 2-point function that depends on 
the broadening probability distribution:

S(2)(t0, t) ⌘ 1

Nc
htrG(t0, t)G†(t0, t)i = (2⇡)2�(p0 � p̄0)P(p� p0, t

0 � t)
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P(p, t) =

Z
d2r e�ip·r 1

Nc
htrU(x)U†(x̄)i

r = x̄� x
1

Nc
h. . .i(2)

��
1
⇠ �g2 tr(tatb)

2Nc

Z
ds

Z
ds0

Z

q,q0
e�iq·x�iq0·xhAa(s, q)Ab(s0, q0)i

⇠ �g2CF

Z
ds n�(0)

⇠ �g2 tr(tatb)

2Nc

Z
ds

Z
ds0

Z

q,q0
e�iq·x+iq0·xhAa(s, q)A⇤b(s0, q0)i

⇠ �g2CF

Z
ds n�(r)

1

Nc
h. . .i = e�g2Nc

R
ds n[�(0)��(r)] = e�

1
2

R
ds�(s,r)

We ultimately recover the dipole scattering rate:
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d�

d⌦p
=

Z

p0

P(p� p0, L)
d�

d⌦p0

What is the form of the broadening probability distribution?
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BROADENING AND QHAT
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d�

d⌦p
=

Z

p0

P(p� p0, L)
d�

d⌦p0

What is the form of the broadening probability distribution?

“harmonic oscillator”/“dipole” approximation

�(r) ' 1

2
q̂r2 P(t,p) =

4⇡

q̂t
e�

p2

q̂t)

Medium	scale: Q2
s ⌘ q̂L
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d�

d⌦p
=

Z

p0

P(p� p0, L)
d�

d⌦p0

What is the form of the broadening probability distribution?

In this scheme, q̂ is a transport coefficient describing diffusion 
in space transverse to the beam/projectile.

q̂ ⇠ g4CRn

Z

q
q2�(q) ⇠ g4T 3 ln

1

r2m2
D

“harmonic oscillator”/“dipole” approximation

�(r) ' 1

2
q̂r2 P(t,p) =

4⇡

q̂t
e�

p2

q̂t)

Medium	scale: Q2
s ⌘ q̂L



NO ENERGY LOSS?!
In	the	high-energy	limit,	radiative	processes	are	responsible	for	energy	
being	redistributed	among	many	fragments.
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t

k, zE

p, E

L0

Ma,i(p, k) =

Z

k0,p0,p0

Z 1

0
dtG(L,k; t,k0|zE)ab

1

2E

⇥
⇥
G(L,p; t,p0 � k0|(1� z)E)V i,b(k0 � zp0, z)G(t,p0; 0,p0|E)

⇤ij

⇥Mj(p0) .

Expression is easy to write using the Feynman rules derived earlier :

t

k, zE

p, E

t

k, zE

p, E

t

k, zE

p, E

For our purposes (energy loss), we will derive the rate of emission of soft 
gluons! For energetic quarks, we use the “tilted” Wilson lines, and find

We have used the vertex in the limit z≪1, and V are Wilson lines in the 
fundamental representation that are tracing the quark trajectory

M(a,i)(p, k) =
g

!

Z L

0
dt ei

!
2 n2t (@x + i!n) · ✏⇤� Gab(k, L;x, t)

��
x=nt

⇥
⇥
V (L, t)tb V (t, 0)

⇤ij Mj
0
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d�

d⌦k d⌦p
= nf

D 1

2Nc

X

�,s

|M(a,i)(p, k)|2
E

We will not be interested in the transverse momentum of the emitted gluon, 
assuming that it is sufficiently soft to be radiated at large angles. Then

d�

d!d⌦p
' dI

d!

d�vac

d⌦p
,

dI

d!
=

g2

8⇡Nc !3
2Re

Z L

0
dt̄

Z t̄

0
dt ei

!
2 n2(t�t̄) (@x + i!n) · (@x̄ � i!n)

⇥
D
G b̄b(x̄, t̄;x, t)U b̄b

x (t̄, t)
E

x=nt,x̄=nt̄

tr
⇣
V †(t̄, t)tb̄V (t̄, t)tb

⌘
=

1

2
U b̄b(t̄, t)where we used that (Fierz)

This spectrum does not depend directly on the energy of the projectile (eikonal limit), 
and it is easy to demonstrate its independence on n as well.
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dI

d!
=

↵sCF

!3
2Re

Z L

0
dt̄

Z t̄

0
dt@x · @yK(x,y)

��
x=y=0

S(2)(Xf ;Xi) =
1

N2
c � 1

hTrU †
1G(t̄, zf ; t, zi)i

=

Z
Dr exp

(
i!

2

Z t̄

t
ds ṙ2(s)� 1

2

Z t̄

t
ds�(r � x1)

)

=

Z
Dr exp

(Z t̄

t
ds


i!

2
ṙ2(s)� 1

2
�(r)

�)

| {z }
K(x,y)

⇥phases

where �x1 = x1(t̄) � x1(t) and the 3-point function S̃(3)(x,y,v) is explicitly given in Eq. (286). For a
vanishing dipole size, i.e. v = 0, we introduce the common notation,

S̃(3)(x,y,0) ⌘ K(x,y) . (146)

Thus, the final expression for the spectrum reads

dI

d!
=

↵sCF

!3
2Re

Z L

0
dt̄

Z t̄

0
dt@x · @y K(x,y)

���
x=y=0

. (147)

This spectrum was first derived by BDMPS-Z [1, 2, 15, 5, 3, 4], see also [16, 17, 18] for equivalent
formulations.3 In the harmonic approximation, the correlator reads

@x · @y K(x,y)
���
x=y=0

= �
1

2⇡

✓
!⌦

sinh ⌦⌧

◆2

, (148)

where ⌧ = t̄ � t and ⌦ = (1 + i)/2
p
q̂/!.

The expression in Eq. (147) can be further simplified by noticing that the dominant contribution
involves a strong correlation of the time-integrations. Introducing the variable ⌧ = t̄ � t, we note that
its range is bounded by the coherence time tf ⇠

p
!/q̂, which for soft emissions ⌧ < tf ⌧ L � t ⇠ L.

Hence, in the limit of large medium one can approximate the time integration over ⌧ as follows,

Z L

t
dt̄ =

Z L�t

0
d⌧ ⇡

Z 1

0
d⌧ . (149)

[KMT: It is worth pointing out that the trick of extending the integration up to infinity
follows from vacuum arguments...] Formally, this allows to treat multiple radiation as independent
with a constant rate

dI

d!dt
⇡

↵sCF

!3
2Re

Z 1

0
d⌧ @x · @y K(x,y)

���
x=y=0

, (150)

where the 2-point function lives in the time interval [t + ⌧, t]. Note that letting x = y = 0 before
integrating over ⌧ in Eq. (150) generates a spurious ⇠ ⌧�2 divergence that is regulated by integrating
over ⌧ before integrating over the soft gluon transverse momentum that yields the condition x = y = 0,
see e.g. [8]. [KMT: Should quickly derive the virtual correction as well.]

Before we go on to the resummation, it is instructive to compute the virtual correction. The amplitude
reads

M
virt = g2

Z 1

0

d!

2⇡

Z
d2k

(2⇡)2

Z

p
0
,p0,p00,k0

Z L

0
dt

Z L

t
dt̄

✓
�

2g

z

◆✓
2g

z

◆�
k0

� zp00�
· (k � zp0)

⇥ G
ab(k0, t̄; k, t|zE)

1

2E

1

2zE

1

2(1 � z)E

⇥
⇥
G(p, L; p00, t̄|E)taG(p00

� k0, t̄; p0
� k, t|(1 � z)E)tbG(p0, t; p0, 0|E)

⇤
ij

Mj , (151)

where we already have only used the eikonal part of the vertex. We apply the tilted Wilson lines

G(p, L; p00, t̄|E) = e�i p2

2E (L�t̄)V1(L, t̄)(2⇡)2�(p00
� p) , (152)

G(p00
� k0, t̄; p0

� k0, t|(1 � z)E) = e�i (p00�k0
)
2

2(1�z)E (t̄�t)V1(t̄, t)(2⇡)2�(p0
� k � p00 + k0)

= e�i (p�k0
)
2

2(1�z)E (t̄�t)V1(t̄, t)(2⇡)2�(p0
� k � p + k0) , (153)

G(p0, t; p0, 0|E) = e�ip02
2E tV1(t, 0)(2⇡)2�(p0 � p0)

= e�i (p+k�k0
)
2

2E tV1(t, 0)(2⇡)2�(p0 � p + k0
� k) . (154)

3
Here, a note on the limits of the integrals in Eq. (147) is in place. Note that we can safely let the upper limit of the

time integral to go to 1, while maintaining a finite support for the medium potential. Such a procedure would allow us to

pick up finite-size e↵ects since we would explicitly include interferences between emissions inside and outside the medium.

The full BDMPS-Z spectrum accounts for these finite-size e↵ects. Additionally, we would recover the vacuum for the piece

where both t, t0 > L. In what follows we neglect these corrections and focus on what is usually referred to as the deep LPM

regime.

18

The function K is suppressed at a characteristic time scale, called the branching time. 
Assuming tf ~ √(ω/q̂) ≪ L, we can use the following trick do define a rate!
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Appendix D. The harmonic approximation
{sec:harmonic-approx}

The reduced 3-point function Eq. (C.8) is the basic building block to be evaluated. This
can be carried out analytically in the harmonic approximation,

Ncn�(x) '
1

2
q̂A x2 , (D.1){eq:harmonic-approx}

where we have explicitly denoted the color factor dependence of the jet quenching parameter
(throughout the paper q̂ ⌘ q̂A , unless explicitly stated otherwise). Using Eq. (D.1) in Eq. (C.8)
and assuming v ⇡ v(t0) ⇡ v(t) to be constant in the interval ⌧ ⌘ tf � ti, which is assumed to
be small throughout the paper, we find

S̃(3)(uf ,ui,v) ' exp
h
�

1
4

⇣
CR
Nc

�
1
4

⌘
q̂ v2 ⌧

i
K(xf ,xi) (D.2){eq:3-point-fct-ho-1}

where

x ⌘ u +
v

2
. (D.3){eq:x-def}

The resulting quadratic path integral in K(xf ,xi) is standard and yields

K(xf ,xi) =

Z
Dx exp

"
i!

2

Z t0

t
ds

✓
ẋ2 + i

x2

2tf2

◆#

=
!⌦

2⇡i sinh⌦⌧
exp

⇢
i!⌦

4


tanh

⌦⌧

2
(xf + xi)

2 + coth
⌦⌧

2
(xf � xi)

2

��
, (D.4){eq:ho-int}{eq:ho-int}

with tf ⌘
p
!/q̂ and ⌦ ⌘ (1 + i)/(2tf). In the absence of a medium, we get

K0(xf ,xi) ⌘ K(xf ,xi)|q̂!0 =
!

2⇡i⌧
exp

h
i
!

2⌧
(xf � xi)

2
i
. (D.5){eq:K-vacuum}

The full expression reads then,

S̃(3)(uf ,ui,v) ' exp


�
1

4

✓
CF

Nc
�

1

4

◆
q̂ v2⌧

�

⇥
!⌦

2⇡i sinh⌦⌧
exp

⇢
i!⌦

4


tanh

⌦⌧

2
(xf + xi)

2 + coth
⌦⌧

2
(xf � xi)

2

��
, (D.6){eq:3-point-fct-ho-3}{eq:3-point-fct-ho-3}

which can be approximated further if we assume that the formation time of the radiated gluon
is the smallest time scale, i.e. ⌧ < tf ⌧ (q̂v2)�1. That is one can neglect the first factor in the
above expression. This leads to

S̃(3)(uf ,ui,v) '
!⌦

2⇡i sinh⌦⌧
exp

⇢
i!⌦

4


tanh

⌦⌧

2
(uf + ui + v)2 + coth

⌦⌧

2
(uf � ui)

2

��
,

(D.7){eq:3-point-fct-ho-4}{eq:3-point-fct-ho-4}

which in Fourier space becomes

S̃(3)(k, q, l) =

Z
d2ufd

2uid
2v S̃(3)(uf ,ui,v) e

�ik·uf+iq·ui�il·v

' (2⇡)2�(2)
✓

l �
k � q

2

◆

⇥
2⇡i

!⌦ sinh⌦⌧
exp


�i

(k + q)2

4!⌦ coth(⌦⌧/2)
� i

(k � q)2

4!⌦ tanh(⌦⌧/2)

�
. (D.8){eq:3-point-fct-ho-FT2}{eq:3-point-fct-ho-FT2}
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where �x1 = x1(t̄) � x1(t) and the 3-point function S̃(3)(x,y,v) is explicitly given in Eq. (286). For a
vanishing dipole size, i.e. v = 0, we introduce the common notation,

S̃(3)(x,y,0) ⌘ K(x,y) . (146)

Thus, the final expression for the spectrum reads

dI

d!
=

↵sCF

!3
2Re

Z L

0
dt̄

Z t̄

0
dt@x · @y K(x,y)

���
x=y=0

. (147)

This spectrum was first derived by BDMPS-Z [1, 2, 15, 5, 3, 4], see also [16, 17, 18] for equivalent
formulations.3 In the harmonic approximation, the correlator reads

@x · @y K(x,y)
���
x=y=0

= �
1

2⇡

✓
!⌦

sinh ⌦⌧

◆2

, (148)

where ⌧ = t̄ � t and ⌦ = (1 + i)/2
p
q̂/!.

The expression in Eq. (147) can be further simplified by noticing that the dominant contribution
involves a strong correlation of the time-integrations. Introducing the variable ⌧ = t̄ � t, we note that
its range is bounded by the coherence time tf ⇠

p
!/q̂, which for soft emissions ⌧ < tf ⌧ L � t ⇠ L.

Hence, in the limit of large medium one can approximate the time integration over ⌧ as follows,

Z L

t
dt̄ =

Z L�t

0
d⌧ ⇡

Z 1

0
d⌧ . (149)

[KMT: It is worth pointing out that the trick of extending the integration up to infinity
follows from vacuum arguments...] Formally, this allows to treat multiple radiation as independent
with a constant rate

dI

d!dt
⇡

↵sCF

!3
2Re

Z 1

0
d⌧ @x · @y K(x,y)

���
x=y=0

, (150)

where the 2-point function lives in the time interval [t + ⌧, t]. Note that letting x = y = 0 before
integrating over ⌧ in Eq. (150) generates a spurious ⇠ ⌧�2 divergence that is regulated by integrating
over ⌧ before integrating over the soft gluon transverse momentum that yields the condition x = y = 0,
see e.g. [8]. [KMT: Should quickly derive the virtual correction as well.]

Before we go on to the resummation, it is instructive to compute the virtual correction. The amplitude
reads

M
virt = g2

Z 1

0

d!

2⇡
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d2k

(2⇡)2

Z

p
0
,p0,p00,k0

Z L

0
dt
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t
dt̄

✓
�

2g

z

◆✓
2g

z

◆�
k0

� zp00�
· (k � zp0)

⇥ G
ab(k0, t̄; k, t|zE)

1

2E

1

2zE

1

2(1 � z)E

⇥
⇥
G(p, L; p00, t̄|E)taG(p00

� k0, t̄; p0
� k, t|(1 � z)E)tbG(p0, t; p0, 0|E)

⇤
ij

Mj , (151)

where we already have only used the eikonal part of the vertex. We apply the tilted Wilson lines

G(p, L; p00, t̄|E) = e�i p2

2E (L�t̄)V1(L, t̄)(2⇡)2�(p00
� p) , (152)

G(p00
� k0, t̄; p0

� k0, t|(1 � z)E) = e�i (p00�k0
)
2

2(1�z)E (t̄�t)V1(t̄, t)(2⇡)2�(p0
� k � p00 + k0)

= e�i (p�k0
)
2

2(1�z)E (t̄�t)V1(t̄, t)(2⇡)2�(p0
� k � p + k0) , (153)

G(p0, t; p0, 0|E) = e�ip02
2E tV1(t, 0)(2⇡)2�(p0 � p0)

= e�i (p+k�k0
)
2

2E tV1(t, 0)(2⇡)2�(p0 � p + k0
� k) . (154)

3
Here, a note on the limits of the integrals in Eq. (147) is in place. Note that we can safely let the upper limit of the

time integral to go to 1, while maintaining a finite support for the medium potential. Such a procedure would allow us to

pick up finite-size e↵ects since we would explicitly include interferences between emissions inside and outside the medium.

The full BDMPS-Z spectrum accounts for these finite-size e↵ects. Additionally, we would recover the vacuum for the piece

where both t, t0 > L. In what follows we neglect these corrections and focus on what is usually referred to as the deep LPM

regime.

18

Explicitly, in the harmonic oscillator approximation:

tf ⌘
p

!/q̂ ⌦ ⌘ (1 + i)/(2tf)where

and has to be regularized in 𝜏→0…

Can	also	expand	in	Ω	to	obtain	the	opacity	expansion	(N=1).
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!
dI

d!
=

↵sCR

2⇡

r
q̂L2

!

tf =
!

k2?
⇠

r
!

q̂
modified splitting kinematics

lack of collinear singularity!

hk2?i ⇠ q̂tmomentum broadening

Baier,	Dokshitzer,	Mueller,	Peigné,	Schiff	(1997-2000);	Zakharov	(1996);…

[coupling sensitive to 
medium scale: 𝛼s(q̂L)]
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!
dI

d!
=

↵sCR

2⇡

r
q̂L2

!

tf =
!

k2?
⇠

r
!

q̂
modified splitting kinematics

lack of collinear singularity!

hk2?i ⇠ q̂tmomentum broadening

Baier,	Dokshitzer,	Mueller,	Peigné,	Schiff	(1997-2000);	Zakharov	(1996);…

[coupling sensitive to 
medium scale: 𝛼s(q̂L)]

N(!) =

Z 1

!

dN

d!
⇠ ↵̄

r
!c

!

N(!c) ⇠ O(↵̄)

N(!s) ⇠ O(1)
multiplicity above a certain energy ω

rare emissions, 
hard BDMPS

copious production, 
need for resummation, 
large fluctuations

!
dI

d!
= ↵̄

q
!c

�
!

Medium	scales: !c ⇠ q̂L2 !s ⇠ ↵̄2q̂L2
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tbr(!) =

r
!

q̂

tbr(!c) ⇠ O(L)

tbr(!s) ⇠ ↵̄O(L)

takes a long time to form, 
emerge at the end of the 
medium

produced rapidly, further 
branching highly probable
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tbr(!) =

r
!

q̂

tbr(!c) ⇠ O(L)

tbr(!s) ⇠ ↵̄O(L)

takes a long time to form, 
emerge at the end of the 
medium

produced rapidly, further 
branching highly probable

✓br(!) =
4

r
q̂

!3

✓br(!c) ⇠
r

1

q̂L3
⌘ ✓c

✓br(!s) ⇠
1

↵̄3/2
✓c

minimal angle!

energy transported to 
parametrically large angles
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We compute modifications to the jet spectrum in the presence of a dense medium. We show that in

the large-Nc approximation and at leading logarithmic accuracy the jet nuclear modification factor

factorizes into a quenching factor associated to the total jet color charge and a Sudakov suppression

factor which accounts for the energy loss of jet substructure fluctuations. This factor, called the

jet collimator, implements the fact that subjets, that are not resolved by the medium, lose energy

coherently as a single color charge, whereas resolved large angle fluctuations su↵er more quenching.

For comparison, we show that neglecting color coherence results in a stronger suppression of the jet

nuclear modification factor.

PACS numbers: 12.38.-t,24.85.+p,25.75.-q

The properties of fully reconstructed jets in heavy-ion
collisions [1–4] reveal the e↵ects of notable final state
interactions. They are currently actively investigated as
probes of the underlying deconfined hot matter produced
in these collisions. A remarkable observation is the strong
suppression of the jet yield which persists over a large
range of transverse momentum. In contrast, in-cone jet
modifications tend to decrease in the same variable [5–
7]. This challenges our understanding of the mechanisms
underlying jet modifications in the presence of a QCD
medium.

Jet quenching is commonly understood as the result of
medium-induced processes that carry energy away from
the jet. The amount of energy, ✏, lost by a jet in a dense
medium can be generically described by a probability
distribution P (✏), called the quenching weight. Hence,
the jet spectrum reads

d�med

dp2
T
dy

=

Z 1

0
d✏P (✏)

d�vac(pT + ✏)

dp2
T
dy

, (1)

where d�vac is the jet spectrum in vacuum. The quench-
ing probability distribution is expected to depend on the
medium properties, such as the jet quenching parameter
q̂, which is an in-medium di↵usion coe�cient in trans-
verse momentum space, and the medium length L [8],
but it should also be sensitive to jet scales, such as the
jet pT and cone size R.

The tools for analyzing jet quenching were developed
to account for radiative and elastic energy loss o↵ a single
color charge propagating in the medium [9–14], see also
the recent reviews [15, 16] and references therein. How-
ever, owing to the QCD mass singularity, the original
parton, which initiates the jet, tends to branch rapidly—
including inside the medium. This leads one to ques-
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tion the single charge energy loss approximation for jet
quenching at high-pT . Recently, the radiative energy loss
of color-connected subjets was shown to be sensitive to
interferences between the emitters [17]. As a result, in
the small-angle limit the system interacts coherently with
the medium only via the total charge, confirming earlier
expectations [18–21]. On the other hand, most Monte
Carlo implementations of quenching ignore possible inter-
ference e↵ects on jet energy loss and usually assume that
jet constituents lose energy independently. One may ex-
pect a substantial quantitative discrepancy between the
two pictures.
In vacuum, due to the well known cancellation of soft

and collinear singularities between real and virtual dia-
grams, higher-order corrections to the fully inclusive jet
spectrum are suppressed by powers of the coupling con-
stant [22, 23]. We point out that in the presence of a
dense medium the cancelation is not complete owing to
the mismatch between real splittings and virtual fluctu-
ations that are a↵ected di↵erently by energy loss pro-
cesses. This takes place whenever the medium resolves
the individual color charges created in an early vacuum
splitting. The mismatch generates potentially large log-
arithms that have to be resummed in a medium-driven
Sudakov suppression of the inclusive jet spectrum which
reflects the additional quenching of higher-order jet fluc-
tuations. Coherence e↵ects tend to moderate the e↵ect
by restoring the cancellation at small angles, due to the
limited resolution power of the medium.
The main focus of this Letter is to compute the e↵ect

of fluctuations of the jet substructure on the jet spectrum
Eq. (1). As will become clear in the moment, it is con-
venient to directly consider the ratio of the jet spectrum
in medium and the unmodified vacuum spectrum known
as the nuclear modification factor,

Rjet =

✓
d�med

dp2
T
dy

◆.✓
d�vac

dp2
T
dy

◆
. (2)

Furthermore, if one assumes a steeply falling power spec-

t1 t1 + τ10 L

ωnω2ω1

t2 t2 + τ2 tn + τntn

Flow of energy away from leading particle dominated by copious, soft gluon 
emission at large angles. Next step is to resum these emissions into a 

probability distribution for energy loss.

First step: jet is a single quark/gluon.

For short emission times: overlap are suppressed by L/tf compared to 
independent: stick to independent emissions!
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0 tLt t′
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0
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0
d!
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d!dt
P1(✏� !, t) ,

One-prong energy loss prob: only one possible color structure propagates.

Real emission:
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One-prong energy loss prob: only one possible color structure propagates.

Real emission:

All possible time-orderings:

t t′

amplitude

c.c.

+

t t′

+

t t′

+

t t′

(a) (b) (c) (d)



K. Tywoniuk (CERN) JETSCAPE 2018

SINGLE-CHARGE QUENCHING

25

• single color charge + soft gluons
• modest intra-jet modification of splitting function

Energy	loss	dominated	by	typical	emitted	energy	(large	medium)

Baier,	Dokshitzer,	Mueller,	Schiff	(2001)

Resummation	of	multiple	(primary)	emissions	=	Poisson	distribution
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COHERENT JET QUENCHING

• bias due to steeply falling 
spectrum

• dying off slowly with pT

• important	improvement: 
secondary emissions merging 
onto medium-induced cascade

26

Baier,	Dokshitzer,	Mueller,	Schiff	(2001),	Salgado,	Wiedemann	(2003)

Quenching	factor	of	jet	total	charge

Q1(pT ) ⇡ exp

"
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HIGHER ORDER CORRECTIONS

• higher-order jet structures demands analyzing 
interference terms

• simple rate equation at large-Nc for rapid splittings
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such that the decoherence parameter is

�med(tL) = 1 �
⇥
S1(tL, 0)

⇤2
= 1 � exp

⇢
�
1

4

Z tL

0
dt q̂(1)

A
(x12, t)x2

12(t)

�
, (90)

where we used that qA ⇡ 2qF in the large-Nc limit in order to compare to the leading-order de-
coherence parameter [54]. This factor accounts for an accumulative process of color decoherence
as the pair propagates in the medium.

In summary, calculating the o↵-diagonal color structure S2 at large-Nc, we have recovered
the decoherence parameter describing an antenna traversing the medium and found how radia-
tive corrections contribute. These novel ingredients adds to the program of computing radiative
corrections to in-medium processes (transverse momentum broadening, medium-induced emis-
sions and in-medium decoherence).

4.4. Final answer and generalization to arbitrary color representation

Combining the results obtained in Secs. 4.1, 4.2 and 4.3, we find that the two-prong energy
loss probability obeys the equation

Psing(✏, tL) = �(✏) +

Z tL

0
dt

Z 1

0
d!

⇥
�11(!, t) + �22(!, t)

⇤
P2(✏ � !, t)

+

Z tL

0
dt

⇥
1 � �med(t)

⇤ Z 1

0
d!

⇥
�12(!, t) + �21(!, t)

⇤
�(✏ � !) . (91)

Taking the derivative with respect to t we obtain

@

@t
Psing(✏, t) =

Z 1

0
d!

X

i

�ii(!, t)Psing(✏ � !, t)

+

Z 1

0
d!

⇥
1 � �med(t)

⇤ X

i 6=j

�ij(!, t)�(✏ � !) , (92)

which is identical to the expression one obtains after applying a time derivative to Eq. (14).
To complement the knowledge about the quenching weight in Laplace space, we apply the

same transformation to the two-pronged energy loss distributions, where the evolution equation
(92) takes the following form

@

@t
P̃sing(⌫, t) = �dir(⌫, t)P̃sing(⌫, t) + �int(⌫, t) , (93)

where

�dir(⌫, t) =

Z 1

0
d!

�
�11(!, t) + �22(!, t)

�
e�⌫! , (94)

�int(⌫, t) =
⇥
1 � �med(t)

⇤ Z 1

0
d!

�
�12(!, t) + �21(!, t)

�
e�⌫! , (95)

are the Laplace transformed rates for direct and interference radiation. Equation (93) is a
nonhomogeneous, linear di↵erential equation with initial condition P̃2(⌫, 0) = 1, and is easily
solved by

P̃sing(⌫, t) = P̃ 2
1 (⌫, t)

✓
1 +

Z t

0
dt0 �int(⌫, t

0) P̃�2
1 (⌫, t0)

◆
, (96)

where the one-pronged energy loss distribution is given in Eq. (52).
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Time	scale	for	decoherence	in	medium: td ⇠ (q̂✓2)�1/3

decoherence parameter
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TWO-PRONG ENERGY LOSS

• time scales: formation & 
decoherence

• angular dependence
- minimal angle for resolving jet 

substructure

28

td ⇠ (q̂✓12)
�1/3

0 tf td
P2(✏, L) = P1(✏1, L)⌦ Psing(✏2, L)
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SUMMARY

• in-medium	propagation	

- high-energy propagation: broadening and color 
precession

• medium-induced	radiation	

- main source of energy-loss at high-energy

- copious soft gluon production at large angles

• energy-loss	of	one-	&	multi-parton	systems	

- importance of interference effects: a new time-
scale!

- putting it all together
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