Jet Quenching Measurements at the LHC

Yen-Jie Lee

Massachusetts Institute of Technology

2018 JETSCAPE Winter School and Workshop Berkeley, California 6 January, 2018

Extraction of the medium properties

 The main difficulty: we don't know how to describe the interaction between the hard scattered parton and QGP (a multi-scale problem)

Two theoretical approaches:

(neither of them are the full stories and both of them are effective descriptions in proper regimes)

Medium Response

We also don't know **how much** the medium response (recoil) plays a role in the description of the jet quenching observables and how to describe it correctly

Charged Particle R_{AA}

- Almost no suppression at very high p_T compared to **pp reference** (p_T~400 GeV)
- Similar charged particle R_{AA} in PbPb at **5 TeV** compared to 2.76 TeV

- General trend described by both pQCD and Hybrid models
- Description of the R_{AA} over the whole p_T range is still challenging

Compilation of Hadron R_{AA}

Jet R_{AA} up to $p_T \sim 1$ TeV in PbPb at 5 TeV

Absolute Energy Loss with Z+Jet at 5 TeV

Absolute Energy Loss with y+Jet at 5 TeV

Photon-Jet Data vs. Theoretical Predictions

- JEWEL: pQCD 2 to 2 scattering extrapolated to infrared region + recoil parton
- LBT: pQCD Transport model with medium recoil and thermalization of the quenched energy
- **HYBRID** Model: PYTHIA8 + AdS/CFT drag force (strong coupling)

Dijet Asymmetry in PbPb at 2.76 TeV

Quark vs. Gluon

Do gluons lose more energy than the quarks?

If yes: Gluon jet to quark jet ratio will decrease (Gluon jets are more suppressed)

Charged Jet $p_T D$ (Dispersion) and Jet Girth

Jet Longitudinal Structure

- Fragmentation functions Ratio R_{D(z)} between PbPb and pp collisions at 5 TeV
- Enhancement at large z (high p_T particles in jet): smaller gluon/quark ratio in PbPb
- Weak or no dependence on the jet $\ensuremath{p_{\text{T}}}$

See discussions in Frank Ma, thesis (2013) arXiv:1504.05169 Martin Spousta, Brian Cole

 \rightarrow If switch to γ -tagged jet (mainly quarks), will this enhancement go away?

Photon-Tagged Fragmentation Function

 Observation of modified jet fragmentation function in PbPb with respect to pp

• No significant high z (or small $\xi = \ln(1/z)$) enhancement observed

Photon-Tagged Fragmentation Function

ATLAS: Select on jet $p_T > \frac{1}{2}$ Photon p_T

- Larger modification in the central collisions than that in **inclusive jets**
- Corrected for jet resolution smearing
- Hint of enhancement in PbPb/pp ratio at the high z region

Jet FF with photon p_T as reference

• Almost no modification in 50-100%, significant modification in central events

• Strong modification in central events, compared to **HYBRID** ("Parton level") and **CoLBT**

$\xi_{\rm T}^{\gamma} = \ln \frac{- \mathbf{p}_{\rm T}' ^2}{\mathbf{p}_{\rm T}^{\rm trk} \cdot \mathbf{p}_{\rm T}^{\gamma}} \qquad \begin{array}{c} {}_{\rm HYBRID \ Parton \ Level} \\ {}_{\rm J. \ Casalderrey- Solana \ et \ al.} \\ {}_{\rm JHEP \ 1603 \ (2016) \ 053} \end{array} \qquad \begin{array}{c} {}_{\rm W. \ Chen, \ S. \ Cao, \ T. \ Luo, \ LG. \ Pang, \ XN. \ War} \\ {}_{\rm arXiv: 1704.0364} \end{array}$

Jet Quenching

Where does the Quenched Energy Go?

Jet Transverse Structure

Jet shapes in pp and PbPb at 5.02 TeV

- Jet shapes and fragmentation functions in pp and PbPb collisions at 5 TeV
- Sensitive to the possible medium response to hard probes and induced radiation

Theoretical Interpretation of the Excess

Different explanation of the large angle enhancement in jet shape measurement

- SCET_G: Splitting function (large angle radiation)
- JEWEL & JETSCAPE: medium recoil parton
- CCNU: recoil parton + hydro dynamical evolution
- **HYBRID**: fully thermalized medium response
- McGill: medium response + shower

(See Sangyong's talk)

Focus on the hardest substructure

Does the magnitude of quenching depend on the structure of parton shower? One could **remove the soft radiation** (isolate the hard jet core)

Groomed Jet Substructure with Soft Drop

CMS: used two grooming settings with ΔR >0.1 cut

Yen-Jie Lee

Groomed Jet Mass

- Enhancement of large mass when looking at a less aggressive grooming setting
- Results with a "more aggressive grooming"
- No significant modification of the "jet core"

Momentum Sharing of Subjets

Groomed Jet Splitting Function

- JEWEL: enhancement of low Z_g jets (due to **medium recoil**)
- SCET_G: modification due to medium induced splitting function
- HT & Coherent antenna BDMPS: Data prefer coherent energy loss
- Measurement of r_g and groomed R_{AA} would help to separate models

PbPb/pp

Summary

- Energy flow with respect to jet at the LHC
 - Unprecedented wide p_T reach with high statistics data
 - Modification of jet shapes and fragmentation function
 - Quenched energy out of the cone (R>0.5) carried by low p_T particle
- Hint of medium response from LHC data
 - Different interpretations from theory groups

• Observation of parton flavor dependence of jet quenching:

- R_{AA} depends on meson flavor (light vs. charm vs. beauty) at low p_T
- (Ungroomed) jet substructure become more quark-like in PbPb collisions: Gluons lose more energy than quarks

• "Parton shower shape dependence" of jet quenching:

- Fate of jets with different shower history
- Jet substructure: one could create observables with different sensitivity to medium response
- Groomed jet substructure as a power tool for the highly differential studies of jet quenching: isolate the most sensitive phase space to medium property

Backup slides

3. Groomed Jets

Jet grooming removes soft divergences and uncorrelated background Common technique in HEP

This analysis is the first one using jet grooming in heavy ion collisions

Jet grooming with Soft Drop

Anti-k_T jet is re-clustered with Cambridge/Aachen (CA) Then decluster the angular-ordered CA tree Drop soft branches

To minimize the smearing effect from PbPb underlying event, $\Delta R_{12} > 0.1$ is applied

Measurement of **momentum sharing** between leading and subleading subjets

Andrew Larkoski, Jesse Thaler (CTP) JHEP 1405 (2014) 1465

Compilation of the charged hadron R_{AA}

Jet R_{AA} vs. rapidity

Jet Longitudinal Structure

- Fragmentation functions Ratio $R_{D(z)}$ between PbPb and pp collisions at 5 TeV
- Enhancement at large z: consistent with smaller gluon/quark ratio in PbPb data
- Modified fragmentation could be the reason why
 - high p_T charged hadron $R_{AA} > jet R_{AA}$

Comparison between Z-Jet and Photon-Jet

Groomed jet p_T fraction

CMS Jet Mass

CMS Jet Mass vs. Jet energy

ALICE Hadron-Jet

No sizable modification of jet shape

Missing p_T^{\parallel} vs. A_J

CMS Groomed Jet Splitting Function

CMS Groomed Jet Splitting Function

Groomed Jet Mass (Q vs G)

Groomed Jet Mass (Q vs G)

Jet R_{AA} vs. Theory

Yen-Jie Lee

Z-Jet vs calculations

- Important to have correct pp baseline
- Reasonable agreement between data and theory curves from JEWEL, HYBRID and GLV

N-Subjettiness in PbPb at 2.76 TeV

- Small τ_2/τ_1 related to leading parton splitting into 2 resolvable partons
- Medium modification could shift T_2/T_1 to higher values
- No significant difference between **PbPb data** and **PYTHIA** within the uncertainties
- Could JEWEL, HYBRID, CCNU and SCET_G reproduce this data?

Missing p_T^{\parallel} vs. Δ

"Shooting Jets with Different Width" through the Medium

- Quenched energy distribution depends on the R parameter used in the Anti- $k_{\rm T}$ algorithm
- Hint of narrower leading jet (or wider subleading jet) in PbPb collisions.
 - Soft particles extends to larger Δ in dijet events reconstructed with larger R parameter

$$\Delta = \sqrt{\Delta \phi_{\text{Trk,jet}}^2 + \Delta \eta_{\text{Trk,jet}}^2}$$

"Shooting Jets with Different Width" through the Medium

• Where are the calculations from JEWEL, CCNU, QPYTHIA and SCET_G?

Charged Particle R_{AA} vs. Theoretical Models

0-10%

30-50%

- General trend described by pQCD based and Hybrid models
- A full description of the R_{AA} is still challenging for some models

Description of the D⁰ Meson Data

- At high D⁰ p_T: Trend captured by pQCD and AdS/CFT based models
- Reasonable description of the data could be achieved
- Details doesn't work perfectly, especially the slope of the $D^0 R_{AA}$ vs. p_T

Dijet Transverse Momentum Correlation

R=0.4

R=0.2

- STAR: Di-jet pairs seeded with "hard core"
 - No significant energy flow out of the jet cone R~0.4 in this subset of dijets
- **ATLAS**: inclusive dijet (resolution unfolded)
 - Peak at ~ 0.5
 - Check from CMS?

√|≥ ^{3.5}

3

2.5

1.5

0.5

Pb+Pb

0.3 0.4

o pp

 $X_{J}=p_{T,2}/p_{T,1}$

0.5 0.6 0.7 0.8 0.9

0.8 A_{.1}

Jet Quenching with Inclusive Charged Particles

Flavor Dependence of Parton Energy Loss

arXiv:1708.04962

- R_{AA} is meson flavor dependent at low hadron p_T
- Disappearance of the effect at high hadron p_T
- Results are consistent with the expectation from models with parton flavor dependent energy loss

PHENIX Photon-Hadron Correlation

ALICE Charged Jet Mass

- Data sit between JEWEL recoil on and off
- HYBRID need medium recoil to describe the ALICE data

Charged Jet Mass in pPb and PbPb

Yen-Jie Lee

STAR Hadron-Jet Correlation

arXiv:1702.01108

- R=0.2-0.4
 - I_{CP} significantly lower than unity; significant out-of-cone Eloss
- R=0.5 I_{CP} > R=0.2 I_{CP}
 - indication of the recovery of the quenched energy

Jet Flavor Composition in Dijet and y-Jet

From Doga Gulhan

STAR Splitting Function

• STAR: Di-jet pairs seeded with "hard core"

• No significant modification in this subset of dijet

Quenched Energy out of the Jet Cone

Search for Quasi-Particles in the QGP

Hadron-Jet Angular Correlation

Charged Particle R_{AA} vs. Theoretical Models

- High p_T: General trend described by both pQCD and Hybrid models
- Description of the R_{AA} over the whole p_T range is still challenging

Reproduce ATLAS X_J

From Chris McGinn

