Monte Carlo implementátion of Jet Modification

Abhijit Majumder
Wayne State University

First JETSCAPE Winter School and Workshop, LBNL, Jan 3-7, 2017

Outline

Outline

- Sangyong talked about all the interesting new stuff!

Outline

- Sangyong talked about all the interesting new stuff!
- I will deal with the current status of JETSCAPE,

Outline

- Sangyong talked about all the interesting new stuff!
- I will deal with the current status of JETSCAPE,
- Most of what I will discuss is currently already in the JETSCAPE framework

Outline

- Sangyong talked about all the interesting new stuff!
- I will deal with the current status of JETSCAPE,
- Most of what I will discuss is currently already in the JETSCAPE framework
- I will talk about mostly MATTER, some MARTINI, mention the word AdS/CFT

Outline

- Sangyong talked about all the interesting new stuff!
- I will deal with the current status of JETSCAPE,
- Most of what I will discuss is currently already in the JETSCAPE framework
- I will talk about mostly MATTER, some MARTINI, mention the word AdS/CFT
- Present the current setup, and what is included.

Scale dependence: of probe and target

The medium looks different at different length scales

The probe behaves differently at different scales

Need a comprehensive tool to study QGP with jets
From the 2015 LRP

Jets in a medium, grand picture

Jets in a medium, grand picture

Strong coupling,
Energy thermalization

Jets in a medium, grand picture

Strong coupling,
Energy thermalization

Hard sector: theoretically

Start with single gluon emission and consider multiple scattering

A.M. Phys.Rev. D85 (2012) 014023

This needs to be repeated

- Usual assumption, multiple emissions are independent!
- The reason for this depends on your approximation scheme

Consider the case of one emission in

vacuum

$$
\sim \frac{\alpha_{s} C_{F}}{2 \pi} \int d y d^{2} l_{\perp} d^{2} l_{q_{\perp}} P(y) \frac{l_{\perp} \cdot l_{\perp}}{l_{\perp}^{2} l_{\perp}^{2}} \delta^{2}\left(l_{\perp}+l_{q_{\perp}}\right)
$$

One emission from multiple scattering

$$
\begin{aligned}
& \int d l_{\perp} d l_{q_{\perp}} d y \text { C.F. } \delta^{2}\left(q_{\perp}+l_{\perp}-\sum_{i=1}^{s} k_{\perp}^{i}-\sum_{j=1}^{r} p_{\perp}^{j}-\sum_{l=1}^{m} k_{\perp}^{l}-\sum_{k=1}^{n} p_{\perp}^{k}\right) \\
& \frac{l_{\perp}-\sum_{i=1}^{s} k_{\perp}^{i}-\sum_{l=1}^{m} k_{\perp}^{l}}{\left(l_{\perp}-\sum_{i=1}^{s} k_{\perp}^{i}-\sum_{l=1}^{m} k_{\perp}^{l}\right)^{2}} \cdot \frac{l_{\perp}-y \sum_{i=1}^{r+s} k_{\perp}^{i}-\sum_{l=1}^{m} k_{\perp}^{l}}{\left(l_{\perp}-y \sum_{i=1}^{s} k_{\perp}^{i}-\sum_{l=1}^{m} k_{\perp}^{l}\right)^{2}} \\
& \prod_{i=1}^{N} \int d y_{i}^{-} \frac{\int d^{3} \delta y_{i} \rho\langle p| A^{+}\left(y_{i}^{-}+\delta y_{i}^{-}, 0\right) A^{+}\left(y_{i}^{-},-\delta y_{\perp}^{i}\right)|p\rangle}{2 p^{+}\left(N_{c}^{2}-1\right)} e^{i k_{\perp}^{i} \delta y_{\perp}^{i}} \\
& {\left[\theta\left(\zeta_{I}^{-}-y_{E}^{-}\right)\left\{e^{-i p^{+} x_{L} y_{\bar{E}}^{-}}-e^{-i p^{+} x_{L} \zeta_{I}^{-}}\right\}-\theta\left(\zeta_{I}^{-}-y_{I}^{-}\right) e^{-i p^{+} x_{L} y_{I}^{-}}-\theta\left(y_{I}^{-}-\zeta_{I}^{-}\right) e^{-i p^{+} x_{L} \zeta_{I}^{-}}\right]} \\
& {\left[\theta\left(\zeta_{C}^{-}-y_{0}^{-}\right)\left\{e^{i p^{+} x_{L} y_{0}^{-}}-e^{i p^{+} x_{L} \zeta_{C}^{-}}\right\}-\theta\left(\zeta_{C}^{-}-y_{C}^{-}\right) e^{i p^{+} x_{L} y_{C}^{-}}-\theta\left(y_{C}^{-}-\zeta_{C}^{-}\right) e^{i p^{+} x_{L} \zeta_{C}^{-}}\right] \ldots}
\end{aligned}
$$

One emission from multiple scattering

$$
\begin{aligned}
& \int d l_{\perp} d l_{q_{\perp}} d y \text { C.F. } \delta^{2}\left(q_{\perp}+l_{\perp}-\sum_{i=1}^{s} k_{\perp}^{i}-\sum_{j=1}^{r} p_{\perp}^{j}-\sum_{l=1}^{m} k_{\perp}^{l}-\sum_{k=1}^{n} p_{\perp}^{k}\right) \\
& \frac{l_{\perp}-\sum_{i=1}^{s} k_{\perp}^{i}-\sum_{l=1}^{m} k_{\perp}^{l}}{\left(l_{\perp}-\sum_{i=1}^{s} k_{\perp}^{i}-\sum_{l=1}^{m} k_{\perp}^{l}\right)^{2}} \cdot \frac{l_{\perp}-y \sum_{i=1}^{r+s} k_{\perp}^{i}-\sum_{l=1}^{m} k_{\perp}^{l}}{\left(l_{\perp}-y \sum_{i=1}^{s} k_{\perp}^{i}-\sum_{l=1}^{m} k_{\perp}^{l}\right)^{2}} \\
& \prod_{i=1}^{N} \int d y_{i}^{-} \frac{\int d^{3} \delta y_{i} \rho\langle p| A^{+}\left(y_{i}^{-}+\delta y_{i}^{-}, 0\right) A^{+}\left(y_{i}^{-},-\delta y_{\perp}^{i}\right)|p\rangle}{2 p^{+}\left(N_{c}^{2}-1\right)} e^{i k_{\perp}^{i} \delta y_{\perp}^{i}} \\
& {\left[\theta\left(\zeta_{I}^{-}-y_{E}^{-}\right)\left\{e^{-i p^{+} x_{L} y_{E}^{-}}-e^{-i p^{+} x_{L} \zeta_{I}^{-}}\right\}-\theta\left(\zeta_{I}^{-}-y_{I}^{-}\right) e^{-i p^{+} x_{L} y_{I}^{-}}-\theta\left(y_{I}^{-}-\zeta_{I}^{-}\right) e^{-i p^{+} x_{L} \zeta_{I}^{-}}\right]} \\
& {\left[\theta\left(\zeta_{C}^{-}-y_{0}^{-}\right)\left\{e^{i p^{+} x_{L} y_{0}^{-}}-e^{i p^{+} x_{L} \zeta_{C}^{-}}\right\}-\theta\left(\zeta_{C}^{-}-y_{C}^{-}\right) e^{i p^{+} x_{L} y_{C}^{-}}-\theta\left(y_{C}^{-}-\zeta_{C}^{-}\right) e^{i p^{+} x_{L} \zeta_{C}^{-}}\right] \ldots}
\end{aligned}
$$

if $\mathrm{l}_{\mathrm{T}} \gg \mathrm{k}_{\mathrm{T}}$, can expand in ratio

$$
\frac{1}{l_{\perp}^{2}}-\frac{\left(1-y+y^{2}\right)\left(\sum_{i=1}^{s} k_{\perp}^{i}\right)^{2}}{l_{\perp}^{4}}-\frac{\left(\sum_{i=1}^{m} k_{\perp}^{i}\right)^{2}}{l_{\perp}^{4}}+2\left(1+y^{2}\right) \frac{\left(l_{\perp} \cdot \sum_{i=1}^{s} k_{\perp}^{i}\right)^{2}}{l_{\perp}^{6}}+4 \frac{\left(l_{\perp} \cdot \sum_{i=1}^{m} k_{\perp}^{i}\right)^{2}}{l_{\perp}^{6}} .
$$

$$
\begin{aligned}
& {\left[\theta\left(\zeta_{I}^{-}-y_{E}^{-}\right)\left\{e^{-i p^{+} x y_{\bar{E}}^{-}}-e^{-i p^{+} x L \zeta_{I}^{-}}\right\}-\theta\left(\zeta_{I}^{-}-y_{I}^{-}\right) e^{-i p^{+} x L y_{I}^{-}}-\theta\left(y_{I}^{-}-\zeta_{I}^{-}\right) e^{-i p^{+} x L \zeta_{I}}\right]} \\
& {\left[\theta\left(\zeta_{C}^{-}-y_{0}^{-}\right)\left\{e^{i p^{+} x_{L} y_{0}^{-}}-e^{i p^{+} x_{L} \zeta_{\bar{C}}}\right\}-\theta\left(\zeta_{C}^{-}-y_{C}^{-}\right) e^{i p+x_{L} y_{\bar{C}}}-\theta\left(y_{C}^{-}-\zeta_{C}^{-}\right) e^{i p+x_{L} \zeta_{\bar{C}}}\right] .}
\end{aligned}
$$

Can show that this reduces to the case of single scattering induced single emission as in Wang and Guo Nucl.Phys. A696 (2001) 788-832.

Each of these has multiple scattering

Need to use calculated double differential distribution

$$
\begin{align*}
\frac{d \sigma}{d l_{\perp}^{2} d l_{q \perp}^{2}} \propto & \frac{\alpha_{s} C_{F} P(y)}{l_{\perp}^{2} y} \int_{0}^{L^{-}} d \zeta^{-} D\left(\zeta^{-}\right)\left\{2-2 \cos \left(p^{+} x_{L} \zeta^{-}\right)\right\}\left[\left(\frac{4-2 \vec{l}_{\perp} \cdot \nabla_{l_{q_{\perp}}}}{l_{\perp}^{2}}\right) \frac{e^{-\frac{l_{q^{2}}^{2}}{4 \int d y^{-D\left(y^{-}\right)}}}}{4 \pi \int d y^{-D\left(y^{-}\right)}}\right. \\
& +\nabla_{l_{q_{\perp}}}^{2} \frac{e^{-\frac{l_{q_{1}^{2}}^{2}}{4 \iint y^{-D(y)}}}}{4 \pi \int d y^{-} D\left(y^{-}\right)} \tag{95}
\end{align*}\left(\int_{\zeta^{-}}^{L^{-}} d y^{-} D\left(y^{-}\right)\right)\left\{\frac{\left.2 \vec{l}_{\perp} \cdot \nabla_{l_{q_{\perp}}} \nabla_{l_{q_{\perp}}}^{2}-4 \nabla_{l_{q_{\perp}}^{2}}^{l_{\perp}^{2}}\right\} \frac{e^{-\frac{l_{q_{1}^{2}}^{2}}{4 \int d y^{-D(y)}}}}{4 \pi \int d y^{-D\left(y^{-}\right)}}}{}\right.
$$

$l_{q \perp}$ is the off-set from the quark and gluon momenta being equal and opposite

A Monte-Carlo needed to track the momenta of each of the partons

Integrating out the $l_{q \perp}$

$$
\frac{d \sigma}{d l_{\perp}^{2}} \sim \int d y \frac{\alpha\left(l_{\perp}^{2}\right) P(y)}{l_{\perp}^{2}} \int d \zeta^{-} \frac{\hat{q}}{l_{\perp}^{2}}\left[2-2 \cos \left(\frac{l_{\perp}^{2}}{2 q^{-} y(1-y)} \zeta^{-}\right)\right]
$$

What exactly is being retained?

We are retaining terms that keep one propagator off-shell

Similar to the case of no scattering in vacuum

Introduces medium dependent correction to vacuum emission process

Involves interference between states of different virtuality.

What is resummed?

Resum higher order contributions that are enhanced within the restricted phase space of the process.

$$
\left[\alpha_{S} \sim \frac{1}{\log \left(Q^{2}\right)}\right] \times \int^{Q^{2}} \frac{d l_{\perp}^{2}}{l_{\perp}^{2}}
$$

$$
\left[\alpha_{S} \sim \frac{1}{\log \left(Q^{2}\right)}\right] \times \int^{Q^{2}} \frac{d l_{\perp}^{2}}{l_{\perp}^{2}}\left(1+\frac{\hat{q} \tau}{l_{\perp}^{2}}\right)
$$

Resummation by Differentiation: DGLAP and Sudakov form factor

Assume large scale separation from $\mathrm{D}(\mathrm{z})$ or $\mathrm{J}(\mathrm{z})$ factorization of final state and DGLAP evolution

$$
\frac{\partial D\left(z, Q^{2}\right)}{\partial \log Q^{2}}=\frac{\alpha_{S}}{2 \pi} \int \frac{d y}{y}[P(y)+\Delta P(y)]_{+} D\left(z / y, Q^{2}\right)
$$

Integral solution, by introducing the Sudakov form factor.
$D\left(z, Q^{2}\right)=\Delta(Q) D\left(z, Q_{0}\right)+\int \frac{d Q_{1}^{2}}{Q_{1}^{2}} \frac{\Delta(Q)}{\Delta\left(Q_{1}\right)} \int \frac{d y}{y} \frac{\alpha_{S}}{2 \pi}(\hat{P}+\Delta \hat{P}) D\left(z / y, Q_{1}^{2}\right)$

Probability of no resolvable emission between Q and Q_{0}
$\Delta(Q)=e^{-\int_{Q_{0}^{2}}^{Q^{2}} \frac{d t}{t} \int d y(P(y)+\Delta P(y))}$

How does it affect virtuality evolution

Results from MATTER evolution

Need good eyes to see the energy loss

Scattering keeps the virtuality from dropping as in vacuum

After a certain length, virtuality is low enough to switch to another formalism

How important is this?

- What if we only had MATTER and nothing else?
- Something needs to be done with the partons that come down to $\mathrm{Q} \sim 1 \mathrm{GeV}$.
- In vacuum: send to hadronizer
- simple model: motivated by AdS/CFT, remove partons that are more than 1 fm inside QGP, when they reach $\mathrm{Q}=1 \mathrm{GeV}$.
- better approximation, hand off to a low Q model.
- This could be different depending on energy of parton.

How important is this?

Hydro: VISH2+1D single shot

S. Cao, A. M. arXiv:1712.10055

Going to lower virtuality LB / MARTINI

$$
\begin{aligned}
& \int d l_{1} d d_{-1} d d_{l} \text { CF. } \delta \delta^{2}\left(q_{1}+l_{-}-\sum_{i=1}^{\infty} k_{1}^{\prime}-\sum_{j=1}^{n} p_{1}^{p_{1}}-\sum_{l=1}^{m} k_{1}^{\prime}-\sum_{k=1}^{n} p_{1}^{k}\right)
\end{aligned}
$$

$$
\begin{aligned}
& \left.\left[\theta\left(\zeta_{I}^{-}-y_{E}^{-}\right)\left\{e^{-i p^{+}} x_{L} y_{E}^{-}-e^{\left.-i p^{+} x_{L} \zeta_{I}^{-}\right\}}\right\}-\theta\left(\zeta_{I}^{-}-y_{I}^{-}\right) e^{-i p^{+}} x_{L} y_{I}^{-}-\theta_{I} y_{I}^{-}\right) e^{-i p^{+}} x_{L} \zeta_{I}^{-}\right] \\
& {\left[\theta\left(\zeta_{C}^{-}-y_{0}^{-}\right)\left\{e^{i p^{+} x_{L} y_{0}^{-}}-e^{i p^{+} x_{L} \zeta_{C}}\right\}-\theta\left(\zeta_{C}-y_{C}\right) e^{i p^{+} x_{L} y_{C}}-\theta\left(y_{C}-\zeta_{C}\right) e^{i p^{+}} x_{L} \bar{\zeta}_{C}\right] \quad . .}
\end{aligned}
$$

Transverse momentum is generated by the multiple scattering.

Going to lower virtuality LET / MARTINI

$$
\begin{aligned}
& \int a l_{1} d l_{1} d d_{j} \text { CF. } \delta^{2}\left(q_{1}+l_{-}-\sum_{i=1}^{\infty} k_{1}^{\prime}-\sum_{j=1}^{n} p_{1}^{n}-\sum_{i=1}^{m} k_{1}^{l_{1}}-\sum_{k=1}^{n} p_{i}^{k}\right)
\end{aligned}
$$

$$
\begin{aligned}
& \left.\theta\left(\zeta_{I}^{-}-y_{E}^{-}\right)\left\{e^{-i p^{+}} x_{L} y_{E}^{-}-e^{-i p^{+} x_{L} \zeta_{I}^{-}}\right\}-\theta\left(\zeta_{I}^{-}-y_{I}^{-}\right) e^{-i p^{+} x_{L} y_{I}^{-}}-\theta_{I} y_{I}^{-} \sum_{I}^{-i p^{+}} x_{L} \zeta_{I}\right] \\
& {\left[\theta\left(\zeta_{C}-y_{0}^{-}\right)\left\{e^{i p^{+} x_{L} y_{0}^{-}}-e^{i p^{+} x_{L} \zeta_{C}}\right\}-\theta\left(\zeta_{C}^{-}-y_{C}\right) e^{i p^{+} x_{L} y_{C}}-\theta\left(y_{C}-\zeta_{C}^{-}\right) e^{i p^{+}} x_{L} \bar{\zeta}_{C}\right] \quad . .}
\end{aligned}
$$

Transverse momentum is generated by the multiple scattering.

Going to lower virtuality LBT / MARTINI

Partons are now close to "on-shell" $\sim \hat{\mathrm{q}} \tau$
Can use a Master equation to calculate the change in the distribution
The rates of changing p to $\mathrm{p}+\mathrm{k}$ under multiple scattering have to be calculated

No further enhancement from phase space of radiation

$$
\begin{aligned}
\frac{d P_{q}(p)}{d t}= & \int_{k} P_{q}(p+k) \frac{d \Gamma_{g g}^{g}(p+k, k)}{d k d t}-P_{q}(p) \frac{d \Gamma_{g}^{q}(p, k)}{d k d t} \\
& \quad+2 P_{g}(p+k) \frac{d \Gamma_{q q}^{q}(p+k, k)}{d k d t}, \\
\frac{d P_{g}(p)}{d t}= & \int_{k} P_{q}(p+k) \frac{d \frac{\Gamma_{g}^{g}(p+k, p)}{(p+k)}+P_{g}(p+k) \frac{d \Gamma_{g g}^{g}(p+k, k)}{d k d t}}{} \quad-P_{g}(p)\left(\frac{d \Gamma_{q}^{g}(p, k)}{d k d t}+\frac{d \Gamma_{g g}^{g}(p, k)}{d k d t} \Theta(2 k-p)\right)
\end{aligned}
$$

emission is α_{S} suppressed Thus separated by long time.

The rate

The AMY rates used in MARTINI

Rates are different in LBT

Simulation is similar.

Sample the time integrated rate of find the time when an emission occurs.

Start process after each emission

$$
\begin{aligned}
& \frac{d \Gamma(p, k)}{d k d t}=\frac{C_{s} g_{s}^{2}}{16 \pi p^{7}} \frac{1}{1 \pm e^{-k / T}} \frac{1}{1 \pm e^{-(p-k) / T}} \times
\end{aligned}
$$

$$
\begin{aligned}
& \times \int \frac{d^{2} \mathbf{h}}{(2 \pi)^{2}} 2 \mathbf{h} \cdot \operatorname{Re} \mathbf{F}(\mathbf{h}, p, k), \\
& \mathrm{E}_{\text {init }}=50 \mathrm{GeV}, \mathrm{~T}=250 \mathrm{MeV}
\end{aligned}
$$

Transitioning from one effective theory to another

- Go to an overarching theory
- NLO: 1+2 gluon emission
- Look for regions where the leading pole dominates (HT)
- Look for regions where there is no enhancement from emission (AMY)
- Parametrically separate the two regions, and study the intermediate region

Simulating this on a parton-by-parton level is hard

- We do a sudden approximation
- Use invariant virtuality of parton to transition
- Above Qo use MATTER, below use MARTINI or LBT
- For $\mathrm{E}<\mathrm{E}_{0}$, use AdS/CFT.
- Interesting results for jet shape
- $2<\hat{\mathrm{q}} \tau<3 \mathrm{GeV}$
S. Cao (JETSCAPE) Phys.Rev. C96 (2017) no.2, 024909

Simulating this on a parton-by-parton level is hard

- We do a sudden approximation
- Use invariant virtuality of parton to transition
- Above Q_{0} use MATTER, below use MARTINI or LBT
- For $\mathrm{E}<\mathrm{E}_{0}$, use AdS/CFT.
- Interesting results for jet shape
- $2<\hat{\mathrm{q}} \tau<3 \mathrm{GeV}$
S. Cao (JETSCAPE) Phys.Rev. C96 (2017) no.2, 024909

A realistic matching calculation

Heavy-Ion collisions are not static bricks!
q falls very quickly, much faster than $1 / \tau$.

This artificially enhances the MATTER portion

There can be hotspots where \hat{q} increases and then decreases

How to decide which is the right way: more observables Bayesian routines.

Some shameless advertisement

Some shameless advertisement

some more shameless advertisement

- Multi-Phase transport may solve the heavy-quark puzzle.
- Heavy quarks do not have a BDMPS/AMY phase
- Because of mass, semi-hard heavy quarks have a DGLAP phase followed by a
Gunion-Bertsch phase
- Also heavy-quarks can radiate due to longitudinal diffusion $\hat{\mathrm{e}}$, and $\hat{\mathrm{e}}_{2}$.
- Upcoming inclusion in JETSCAPE

Summary

- Jets are multi-scale objects
- Resolve the medium at different length scales
- Behave differently at different length scales
- Different physical approaches lead to different types of MC simulation
- Some theoretical development still necessary for transition regime
- Need a sophisticated event-generator framework to study the entire set of observables
- Need extensive statistical routines and a framework to compare with experimental data.

