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Overview
• Like Gunther, I am going to take the prerogative  
of  a senior (grizzled, grey haired & bearded) 
physicist to: 

– not attempt a comprehensive summary of  data 
– not be “fair” in what data I select 
– talk about what I want to talk about 

• What do I want to talk about? 
– MPI in (e.g.) pp 
⇒experimental evidence? 

– jet quenching/lack thereof  in p+Pb collisions 
⇒why this might not be surprising 

– hard-soft correlations beyond Glauber/WN 
⇒why these should not be surprising 

– pose some answerable (I hope) questions.
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MPI in pp 
collisions



MPI in pp collisions?
• To what extent does hard physics contribute to 
low-pT / “minimum-bias” physics 

– e.g. in Pythia, MPI important at LHC energies 
⇒consistent with data? 
⇒go back to ATLAS  

analysis of  2-particle  
correlations in pp 

• Implicit assumption: 
– 2-particle correlation  

for given multiplicity  
a sum of  scaled “hard”  
component + v2 term 
⇒empirically: works well,  

better than it should(?)
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Compare data to Pythia

5

From ATLAS  
conf  note,  
didn’t make  
it into paper …



Compare data to Pythia

• Comparison of  data, Pythia per-trigger yields  
in (left) low (10-30) and (right) high (110-120) 

– In Pythia, the away-side peak gets broader with 
increasing multiplicity — expected from MPI
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MPI in pp collisions?

• But in the data, the away-side correlation gets 
narrower with increasing multiplicity 

– we need to continually remind our high-energy 
colleagues that “flow” (for lack of  better word) has 
a significant impact on the underlying event 
⇒not in any event generator 
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MPI in pp collisions?

• But in the data, the away-side correlation gets 
narrower with increasing multiplicity 

– we need to continually remind our high-energy 
colleagues that “flow” (for lack of  better word) has 
a significant impact on the underlying event 
⇒not in any event generator 
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MPI in pp collisions?
• Maybe there’s both MPI and “flow”? 
– and maybe the MPI is hiding in the difference 

between data and the fit? 
⇒subtract … 
⇒basically, the difference is “v3” and “v4”
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MPI in pp collisions?

• We do see away-side broadening w/ increasing 
multiplicity, for pT > 5 GeV 

– In fact, for pT > 7 GeV, “v2” (not) < 0! 
⇒So, the hard phenomena are there, just not seen at 

low pT …
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Questions, thoughts

• To what extent is the 2-particle correlation in 
low-multiplicity pp collisions “hard”? 

• Do soft jet fragments participate in “flow”? 
⇒contrary to the assumption of  template method 

– Suppose they don’t 
⇒then why should we expect to see jet quenching in 

small systems? (more on this later)
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While we’re at it …
• 2-particle correlations in Z-tagged pp collisions 
• Physics “question”: 
– does the presence of  a hard scattering change the  

behavior of  the  (soft?) 2-particle correlation’s? 
⇒apply the same analysis applied to minimum-bias
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2-part correlations in Z-tagged pp

• See barely significant increase in v2 in Z-tagged 
pp collisions relative to minimum-bias 

– but, beware, the <pT> is slightly larger 
⇒pT dependence under analysis 

– however, the presence of  a hard scattering does not  
radically change modulation in the UE. 
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Quenching in 
p+Pb collisions?



Jet quenching in p+Pb
• In the last 4-5 years, many (nearly every?) talk 
on “flow” in small systems asks the question? 

– if  there is collectivity in small systems, why don’t we 
see jet quenching? 
⇒Note to students:  
» repeating a question that has been asked many times 

over without refining or attempting to answer it doesn’t 
make you look “smart”. 

• So, let’s review the relevant experimental data 
– CMS paper on dijets: Eur. Phys. J. C 74 (2014) 2951 

• In particular, dijet balance 
⇒Self-normalized. 
⇒Important in p+Pb (below).
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CMS dijet balance

• Dijet balance distributions for different forward  
ET intervals (centrality) 
⇒no evidence for chance in balance distributions 
⇒should probably be repeated with (much) lower 

leading jet pT, but why no quenching? 
16



Alice p+Pb h-jet correlation

• Short summary: 
– no evidence for jet quenching
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So why?
•First 
– analyses (e.g. by Konrad) that suggest that the 

combination of  transverse size + smaller energy 
density/T yields small quenching effects (5% on RpA) 
⇒but would still expect to see broader jet pT balance 

distribution.  
⇒though would like to see the balance distribution for 

lower-pT jets … 

•But, there is another reason that the smaller 
transverse size in p+Pb collisions matters 

– (perturbative) QCD! 
⇒evolution of  the outgoing states

18



Final-state evolution
•Understanding of   
outgoing parton showers  

– as implemented in (e.g.)  
Pythia event generators 

•Evolution from hard to soft  
(smaller to larger effective  
charge) via angular-ordered radiation 

– not instantaneous, necessarily introduces a 
dependence on the transverse system size, Q2

 or pT  
⇒beyond that of  usual path length in medium 
⇒also relevant to jet quenching in AA collisions 

– needs theoretical attention … 
⇒but, we shouldn't be surprised at the lack of  p+Pb 

quenching until we’re sure it should be there.
19



Final-state evolution
• Can we address the above  
question experimentally? 

– i.e. can we test whether  
components of  a PS/jet  
couple to the “medium”  
in p+A collisions? 

• A question that can maybe answered: 
– do the fragments of  jets couple to the “flow”? 
⇒as a function of  the hadron pT 
⇒as a function of  the jet pT 

– requires measuring two-particle correlations 
selecting one of  the particles to be in the angular  
range of  the jet

20



Yet another problem …
•Forgotten(?) feature  
of  GLV and BDMPS  
energy loss 

– for thin media, the  
interactions with the  
medium result in 
energy gain not loss 
⇒destructive  

interference w/ 
vacuum radiation 

⇒One of  the reasons  
for lack of  quenching  
in p+A?

21



Yet another problem/question
• where is the initial-state dE/dx? 
– at forward rapidity & high pT accessing x ~ 0.4 
⇒shouldn’t we be seeing effects of  initial state dE/dx?
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Yet another problem/question
• Is there significant initial-state dE/dx? 
⇒how can we have a precision jet quenching program  

without knowing the answer to this question?
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Other self-normalizing probes?
• ATLAS jet  
fragmentation  
in Pb+Pb  
collisions 

– modifications  
observed even  
in 60-80%  
centrality 
⇒close to ET or 

Nch accessible  
in p+Pb 

⇒should also  
measure jet  
FF in very high  
ET/Nch p+Pb collisions
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initial state and soft-hard non-factorization
• old news re: p+Pb jet yields  
vs centrality @ high pT and  
forward rapidity 

– and the observation that the  
modification scales vs energy 
⇒ @ forward rapidity 
⇒but not @ backward rapidity  

where energy conservation  
effects are most important  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initial state and soft-hard non-factorization

• Picture by Strikman et al for origin of  the soft-  
hard correlation that produces the effect 

– by now, it’s becoming accepted(?) that shape/color  
fluctuations in the proton may be important … 
⇒IMHO, it would be surprising if  there wasn’t  

a correlation between proton configuration and  
valence quark x distribution for x > ~ 0.3
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initial state and soft-hard non-factorization

• single parameter controls the “centrality” 
evolution of  the Rcp 

– testable prediction for p+Au @ RHIC given  
fit to the d+Au data.
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soft-hard 
correlations



initial state and soft-hard non-factorization
• The wounded nucleon model (maybe) 
augmented to wounded constituent quark 
picture works well in nucleus-nucleus collisions 

– but it was extremely naive to think that it was “right” 

• But on the other hand, it’s useful to ask “how 
could it be wrong”  

– the basic reason WN works is timescales 
⇒the multiple scatterings in (e.g.) p+A happen ~ 

simultaneously in the proton rest frame 
⇒proton responds the same to 1, 2, … scatterings(?) 

– but should it always interact with same σ ? 
⇒the literature said “no” 
⇒basic physics (QM) also says “no” 

•we should not have been surprised by this …
29



A challenge and an opportunity
• The fluctuations in the nucleon configuration 
adds complexity to the understanding of  p+Pb  
AND pp collisions 

– lots of  theoretical ideas that need to be tested 
– but we have experimental observables sensitive to 

the initial transverse energy density distribution 
⇒“flow” 

• So, for example, suppose we could collect  
enough events at “large” x 

– even 0.15 is large 

• Then measure v2, v3, v4 

– should be able to predict  
how they will change if   
Strikman et al are correct.
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Back to pp collisions

• Where does the v3 come from in pp? 
– MPI, valence quark position fluctuations, … 

• But we can do the same test in pp 
– select hard processes with large enough xP and  

look for differences in vn’s 
⇒in this respect, the Z events probably weren’t hard 

enough …
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