

Jet Quenching Measurements at RHIC

Helen Caines Yale University JETSCAPE Workshop LBNL, Jan 2018

Establishing the baseline

How much energy is lost?

How does it reemerge?

What about small systems?

Remaining opportunities

Hard scatterings at RHIC

pp collisions at 200 GeV and R = 0.4

Florian and Vogelsang: PRD76. 074031 PHENIX: arXiv:1501.06197

Jets in vacuum

Inclusive Jet

Well described by NLO pQCD → Jets as high precision tool

First mid-rapidity Dijet

Background Activity in A-A

Challenges: large fluctuating background -> modified JES + smeared JER + combinatorial jets

Experiment methods:

-> constituent cuts, high pT particle match,.. mixed event

Most of the background is sub-2 GeV/c

Underlying event activity in pp

Underlying event:

Increases with beam energy Weak dependence on jet energy Slightly over predicted by PYTHIA

TransMin: BBR and MPI TransMax: ISR and FSR

> Little to no ISR/FSR contribution at RHIC

Measurements in minimum bias d-Au

PHENIX: PRL 116, 122301 (2016)

Helen Caines - JETSCAPE 7

Single hadron high p_T suppression

All colored hadrons suppressed, including HF particles JET collaboration:

q-hat(RHIC) ~1.2 \pm 0.3 GeV²/fm q-hat(LHC) ~ 1.9 \pm 0.7 GeV²/fm

JET: PRC90 1, 014909 (2014) CMS: EPJC 72:1945 (2012) Connors, Nattrass, Reed, Salur arXiv:1706.01974

Helen Caines - JETSCAPE 8

Fractional partonic energy loss - Sloss

At higher collision energies

Apparent universal scaling of S_{loss} with $dN_{\text{ch}}/d\eta$ Independent of colliding species or energy

dN_{ch}/dη ~ energy density ~ system opacity

Di-hadrons with respect to reaction plane

No strong dependence on reaction plane

Eloss fluctuations rather than path length differences

How the energy reemerges

STAR: PRL 112 122301 (2014)

Helen Caines - JETSCAPE 11

Dijets: restore balance with low p_T

Hard core matched dijets

Momentum balance restored to pp baseline for R = 0.4, after adding particles with < 2GeV/c

Balance not restored for R=0.2

Semi-inclusive jet measurements

STAR: PRC96 024905 (2017)

Recoil jet quenched in central 200 GeV Au-Au collisions

Smaller I_{cp} with R = 0.2

Energy shift out of cone

ALICE: JHEP 09 170 (2015) STAR: PRC96 024905 (2017)

Energy shift out of cone

Look at

Spectrum shift \rightarrow energy transport out-of-cone

System		$Au+Au \sqrt{s_{NN}} = 200 \text{ GeV}$	Pb+Pb $\sqrt{s_{\rm NN}} = 2.76 \text{ TeV}$
$p_{\rm T,jet}^{\rm ch}$ range (GeV/c)		[10,20]	[60,100]
		$p_{\rm T}$ -shift of $Y\left(p_{\rm T,jet}^{\rm ch}\right)$ (GeV/c)	
		$peripheral \rightarrow central$	$p+p\rightarrow central$
R	0.2	$-4.4 \pm 0.2 \pm 1.2$	
	0.3	$-5.0 \pm 0.5 \pm 1.2$	
	0.4	$-5.1 \pm 0.5 \pm 1.2$	
	0.5	$-2.8 \pm 0.2 \pm 1.5$	-8 ± 2

R=0.5: Shift at RHIC < LHC

Eloss more focussed at RHIC than LHC

ALICE: JHEP 09 170 (2015) STAR: PRC96 024905 (2017)

Photon triggered correlations

Recoiling parton highly biased towards being a quark Avoids surface bias

$$x_E = - \mid \frac{p_T^a}{p_T^{\gamma}} \mid \cos(\Delta\phi) \approx z$$

Good agreement between RHIC and TASSO measurements of q fragmentation

recoil jet

Fragmentation same in pp and e⁺e⁻

direct photons can be used to calibrate initial parton E

Suppression at high p⊤ again turns into enhancement at low p⊤

Absolute p_T not p_T fraction (z_T) relevant

PHENIX: QM17 STAR: PLB760 689 (2016)

Dijet-hadron correlations

Hard core matched dijets but look at hadron correlation

No significant difference for jet constituent multiplicity hint for recoil p⊤<2 GeV/c But jet energy changed : AJ different → Extend pT coverage, study AJ dependence

19

STAR: QM17

 z_g

STAR: QM17

 $\min(p_{T1}, p_{T2}) > z_{\text{cut}} \,\theta_{\uparrow}^{\beta}$

 $p_{T1} + p_{T2}$

Single hadron high p_T suppression @ BES

Meson and Baryon: different R_{cp} trends At high p_T: pion suppressed for $\sqrt{s_{NN}} > 27$ GeV proton enhanced at all BES energies

Most central high p_T yield suppressed compared to mid-central at $\sqrt{s_{NN}}$ > 14.5 GeV

Quenching in p/d-Au

Strong deviation from unity for centrality selected events when compared to expectations assuming geometric scalings

Unlikely to be from "centrality" definition bias as determined from pp

> coincidental(?) cancelation of central suppression and peripheral enhancement

Model estimates smaller bias in d+Au@200 GeV than p+Pb@5.02 TeV

More results to come

High statistics Au-Au and asymmetric systems data already on tape

High statistics data from Run18

sPHENIX - CD1 expected in 2018

Forward upgrades could be in place by Run21 Access to: photon-jet HF tagged jet AJ selected jets event-engineered studies unbiased high pT jets large rapidity range....

Summary

Significantly enhanced understanding of jet modifications at RHIC

- pp in very good agreement with theory
 - Unbiased recoil jets highly suppressed due to medium induced broadening
- Total E_{loss} less than at LHC
- Lost energy re-emerges at low p_T not z_T
- Di-jet energy imbalance largely recovered within R=0.4 when low p_T hadrons included
- z_g unmodified for hard core jets
- High p_T hadron suppression at BES
- Unexpected centrality dependence of jet RdAu

BACK UP

Experimental aspects / differences

- jet reconstruction:
 - EM + hadron calorimeter based (ATLAS)
 - charged track + EMCal based (STAR + ALICE)
 - particle flow (CMS)
- fake jet rejection:
 - constituent p⊤ cuts
 - leading constituent bias / track jet matching
 - di-jet (hadron-jet) coincidence
 - subtraction
 -
 - consistently applied to the reference, but may introduce physics bias
- background subtraction:
 - median density from clusters (ALICE, STAR)
 - iterative geometrical (ATLAS, CMS)
- corrections: for detector effects (efficiency, resolution) and background fluctuations (resolution-like)
 - typical: full corrections to particle level
 - sometimes: detector and/or background effects applied to a reference

Radial energy distribution in pp jets

"Hard Core" Selection High Tower trigger ET>5.4 GeV pTCut = 2 GeV/c Reduce background Reduce combinatorial jets Jet pTLead>20 GeV/c Jet pTSubLead>10 GeV/c Recover soft component: match to pTCut = 0.2 GeV/c Compared at detector level

'Hard Core' Dijets

locate hard core dijets

reconstruct matched dijets

Dynamics of particles inside the jet Two scales: angular + momentum space

Fragmentation Functions

Sketches by J. Thaler Single hadron Classic Jet Shapes

All hadrons

Groomed Observables

Subset of hadrons

Jet Substructure: soft drop z_g

Large-angle soft radiation + background are removed Goal: to search for modification of hardest jet splitting

What is z_g Soft Drop

Large-angle soft radiation + background are removed Goal: to identify hard jet splitting

Trigger Particle Normalization

$$\frac{1}{N_{trig}^{h,AA}} \frac{dN_{jet}^{AA}}{dp_{T,jet}^{AA}} = \frac{1}{\sigma^{AA \to h+X}} \frac{d\sigma^{AA \to h+jet+X}}{dp_{T,jet}^{AA}}$$

In the case of no nuclear effect

$$\rightarrow \left(\frac{1}{\sigma^{pp \to h+X}} \cdot \frac{d\sigma^{pp \to h+jet+X}}{dp_{T,jet}^{pp}}\right) \times N_{coll}/N_{coll}$$

$$= \frac{1}{N_{trig}^{h,pp}} \frac{dN_{jet}^{pp}}{dp_{T,jet}^{pp}} \xrightarrow{N_{coll}: number of binary nucleon-nucleon collisions}$$

N_{coll} no longer needed for comparison to pp

In p(d)A, various centrality biases depending on phase space selection Bias could also be in peripheral AA

ALICE, arXiv:1706.07612 ALICE, PRC **91**, 064905 Loizides, Morsch, PLB **773** (2017) 408

γ-jet

Coming soon

Background techniques: Mixed event; Off-axis cone

Uncorrelated vs correlated background

Reemergence of lost energy

Lost energy: found in large $\Delta \phi(\Delta R)$ with respect to the away-side jet, converted to low p_T particles.