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Heavy ion physics

§ Recreate a new state of matter, the quark gluon plasma (QGP), 
which prevailed in early Universe in first few micro-seconds, study 
its properties

2RHIC: Au+Au LHC: Pb+Pb



“Jet” tomography: really hadrons

§ Early jet tomography is really using “inclusive hadron production”
§ (modified) fragmentation function in p+p (A+A)
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Jet tomography: true jets

§ New opportunities: jets are abundantly produced at LHC (also 
future RHIC)
§ To describe jet production, we need jet functions
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Jets: exclusive and inclusive measurements

§ Exclusive jet production
§ Make sure one has fixed-number of jets (e.g., dijet), and veto any additional jets 

(e.g., through energy or pT cut)

§ Inclusive jet production
§ Sum over all particles in the final state besides the observed jets

§ Example: single inclusive jet production
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Soft-Collinear Effective Theory (SCET)

§ SCET: an effective field theory of QCD
§ Suitable for processes where there are energetic, nearly light-like (collinear) 

degrees of freedom interacting with one another via soft radiation

§ Modes in SCET

§ Especially suited for jet physics: QCD factorization of modes
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Comments

§ Most of SCET calculations are dealing with “exclusive” jet 
production

§ Most of heavy ion measurements are performed for “inclusive” jet 
samples

§ Jet functions involved in “exclusive” and “inclusive” cases are 
different, even follow different renormalization group equations

§ What are the jet functions for inclusive jet production?
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Tradition tools: QCD factorization

§ Single inclusive jet production:

§ The idea is simple: dynamics which happen in very different 
scales do not interfere with each other: 𝛬QCD vs PT
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Most recent jet measurements
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Most recent jet measurements
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Most recent jet measurements
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CMS, 1609.05383

ü NNLO does not help: further increase, even worse
ü Jet radius R is small: 0.2 – 0.4, [𝛼s ln(R)]n resummation?



Refactorization: semi-inclusive jet function

§ When R << 1, the relevant scales for single jet production
§ Two momenta: (1)  hard collision: pT (2) jet radius can build one: pT*R

§ A further factorization

§ Good thing: semi-inclusive jet function Jq,g(z, R) are purely perturbative
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Kang, Ringer, Vitev, arXiv:1606.06732, Dai, Kim, Leibovich, 1606.07411, 
see also, Kaufmann, Mukherjee, Vogelsang, 1506.01415

p

p

a

b

c

d�
pp!jetX

dpT d⌘
=

X

a,b,c

fa ⌦ fb ⌦Hab!c ⌦ Jc(z, µ ⇠ pTR)



Semi-inclusive jet functions

§ Describe how a parton (q or g) is transformed into a jet (with a jet 
radius R) and energy fraction z

§ Semi-inclusive quark/gluon jet functions follow DGLAP evolution 
equation, just like hadron fragmentation function

14

µ
d

dµ
Ji(z,!J , µ) =

↵s(µ)

⇡

X

j

Z 1

z

dz0

z0
Pji

⇣ z

z0
, µ

⌘
Jj(z

0,!J , µ)

z = !J/!J (0)
q (z,!J) = �(1� z)

LO NLO



Ln(R) resummation

§ Natural scale for jet functions: pT*R

§ Jet radius resummation: 
§ Note: ln(R) < 0 when R < 1 
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Effect of ln(R) resummation

§ The ln(R) is the main source for the discrepancy

§ Threshold resummation further improve the agreement
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Features: unified formalism
§ Unified factorization formalism for hadron and jet production

§ Consistent definition of what are called quark/gluon jets at NLO

§ Even though derived for small R, R = 0.7, the difference between 
small R approximation and full result is less than 5%
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Jet substructure

§ Look inside the jet
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Simplest example: hadron inside the jet

§ Jet fragmentation function
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Semi-inclusive fragmenting jet function

§ One needs a more complicated jet function

§ Two DGLAPs:
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Light hadrons: work well

§ Light charged hadrons
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Further improvement

§ So far standard FFs is only constrain for z > 0.05
§ These data can constrain small-z 

§ One might need threshold resummation for large z region
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Jet fragmentation function for heavy meson

§ Using D meson FFs fitted from e+e- data

25

)
T

F
(z

, 
p

0.02

0.04

0.06

0.08

0.1

0.12
±D*  = 7 TeVsp+p  

 R=0.6 |y| < 2.5Tanti-k

 < 30 GeV
T

25 < p

  ATLAS

  PYTHIA

0.02

0.04

0.06

0.08

0.1

0.12

 < 50 GeV
T

40 < p

z
0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

0.02

0.04

0.06

0.08

0.1

0.12

 < 70 GeV
T

60 < p

0.02

0.04

0.06

0.08

0.1

0.12

 < 40 GeV
T

30 < p

  theory

0.02

0.04

0.06

0.08

0.1

0.12

 < 60 GeV
T

50 < p

z
0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

0.02

0.04

0.06

0.08

0.1

0.12

 < 70 GeV
T

25 < p

Kneesch, Kniehl, Kramer, Schienbein, 08

Using ZM-VFNS scheme:
Chien, Kang, Ringer, Vitev, Xing, 
1512.06851, JHEP 16



Jet fragmentation function for heavy meson

§ Using D meson FFs fitted from e+e- data

26

Kneesch, Kniehl, Kramer, Schienbein, 08

New fit of D-meson FFs needed

Using ZM-VFNS scheme:
Chien, Kang, Ringer, Vitev, Xing, 
1512.06851, JHEP 16
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A new global analysis of FFs

§ New fit of D-meson FFs
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New fit of D-meson FFs: 
Stratmann, et.al., PRD 2017

c + c—

µ
2 = 10 GeV2

z 
D

iD
*+

(z
,µ

2
)

z

 
KKKS08

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.1  0.2  0.3  0.4  0.5  0.6  0.7  0.8  0.9

gluon

u + u—

z D
i D

*+(z,µ
2)

THIS FIT

 
 
 
 
 
 
 

         

 0

 0.01

 0.02

c + c—

re
l. u

n
ce

rta
in

ty

 

 

 

 

 

         
 0

 0.5

 1

 1.5

 2

gluon

re
l. u

n
ce

rta
in

ty

z

 

 

 

 

 

 0.1  0.2  0.3  0.4  0.5  0.6  0.7  0.8  0.9
 0

 0.5

 1

 1.5

 2

Confirms our earlier guess



Subjet in jet: subjet function

§ We may try to observe a subjet with radius r 
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Pattern emerging for the evolution

§ When we measure any jet substructure variable “v” from the jet, 
once we evolve to jet dynamaics scale pT*R, the remaining 
evolution to hard scale pT is given by DGLAP evolution

§ Jet substructure: two-layer QCD factorization
§ Producing the jet

§ Concentrating on the internal substructure
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Jet angularity

§ Trust was defined as an event shape parameter to understand 
radiation pattern

§ is equivalent to dijet limit

§ A generalized class of IR safe observables, angularity (applied to jet)

§ a=0 related to thrust (jet mass)

§ a=1 related to jet broadening
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Semi-inclusive angularity jet function

§ Similar replacement:

§ Refactorization
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LHC phenomenology

§ Prediction at the LHC
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Jet mass: a = 0

§ Comparison with jet mass measurements at the LHC
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Summary

§ A consistent formalism for study inclusive jets and jet 
substructure is introduced, through so-called semi-inclusive jet 
functions

§ For inclusive jet cross section, these novel semi-inclusive jet 
functions are purely perturbative, and follow the usual DGLAP 
evolution equations, which can be used to perform ln(R) 
resummation

§ Jet substructure for inclusive jets can be computed similarly

§ Exciting jet physics for inclusive measurements can be pursued
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