Neutron capture cross sections for short-lived nuclei from surrogate reaction data and theory

Jutta Escher
Lawrence Livermore National Laboratory, Livermore, USA

Collaborators: J. Burke, R. Caspersion, R. Hughes, A. Ratkiewicz, N. Scielzo (LLNL), S. Ota (Texas A&M), J. Cizewski (Rutgers), G. Potel (MSU/FRIB)

6th International workshop on Compound-Nuclear Reactions & Related Topics (CNR*18)

Berkeley, CA
24-28 Sept 2018

Bring together theory, experiment, and data/application communities

https://indico.bnl.gov/e/CNR2018
Neutron capture reactions

\[\frac{d\sigma_{\alpha \chi}^{HF}(E_a)}{dE_{\chi}} = \pi \lambda_\alpha^2 \sum_{J\pi} \omega_\alpha^J \sum_{\ell \ell' s' s''} T_{\alpha \ell s}^J T_{\chi \ell' s'}^J \rho_{I'}(U') W_{\alpha \chi}(J) \sum_{\ell'' s''} T_{\chi'' \ell'' s''}^J \sum_{\chi''} \int T_{\chi'' \ell'' s''}^J (E_{\chi''}) \rho_{I''}(U'') dE_{\chi''} \]
(n,γ) cross sections for unstable isotopes

Neutron capture reactions

Hauser-Feshbach formalism:

\[
\frac{d\sigma_{a\chi}^{HF}(E_a)}{dE_\chi} = \pi \chi^2 \sum_{J\pi} \omega_\alpha \sum_{\ell s' l' s} \sum_{\chi'' s''} T^J_{\alpha \ell s} T^J_{\chi' \ell' s'} \rho_{I'}(U') W_{\alpha \chi}(J) \frac{T^J_{\chi'' \ell'' s''} + \sum_{\chi'' s''} \int T^J_{\chi'' \ell'' s''}(E_{\chi''}) \rho_{I''}(U'') dE_{\chi''}}{\sum_{\ell s' l' s} \sum_{\chi'' s''} T^J_{\chi'' \ell'' s''} \rho_{I''}(U'') dE_{\chi''}}
\]
Capture cross sections for unstable isotopes

Challenge: uncertainties increase dramatically with distance from stability

Figure: Calculated (n,γ) cross sections for Sn isotopes

Hauser-Feshbach formalism:

\[
\frac{d\sigma_{H^F}^{a\chi}(E_a)}{dE_\chi} = \pi\lambda^2 \sum_{J\pi} \omega^J_{\alpha} \sum_{\ell s' s'\ell'} T^J_{\alpha \ell s} T^J_{\chi \ell' s'} \rho_{I'}(U') W_\alpha(J) \\
\sum' \sum'' \sum'' \sum'' \sum'' \int T^J_{\chi'' s'' I''} (E_\chi'') \rho_{I''}(U'') dE_\chi''
\]
Modeling of astrophysical processes requires neutron capture cross sections

Scientific challenge: Origin of the heavy elements?
Reliable nuclear physics required to validate nucleosynthesis models against observations

Practical challenge: Measuring cross sections involving short-lived nuclei
- New facilities, e.g. Facility for Rare Isotope Beams (FRIB), produce unstable nuclei
- Innovative indirect techniques needed
Capture cross sections from surrogate \((p,d)\) reaction

Capture cross sections from surrogate \((p,d)\) reaction

\[\sigma_{(n,\gamma)} = \sum_{J,\pi} \sigma_{n+\text{target} \, \text{CN}}(E,J,\pi) \cdot G_{\text{CN} \gamma}(E,J,\pi) \]

A Surrogate experiment gives

\[P_{(p,d\gamma)}(E) = \sum_{J,\pi} F_{(p,d) \, \text{CN}}(E,J,\pi) \cdot G_{\text{CN} \gamma}(E,J,\pi) \]

Turning measurement into cross section

1. Use theory to describe Surrogate reaction, predict \(F_{(p,d) \, \text{CN}} \)
2. Develop rough decay model \(G_{\text{CN} \gamma} \)
3. Fit uncertain parameters in \(G_{\text{CN} \gamma} \) to reproduce \(P_{(p,d\gamma)} \)
4. Use best-fit parameters to calculate desired \(\sigma_{(n,\gamma)} \)

Result: Experimentally constrained cross section calculation.

Escher et al, RMP 84 (2012) 353
Theory Challenge #1: Neutron hole structure relevant to \((p,d)\) reaction?

- What is the structure of deep neutron holes?
- Location?
- Fragmentation?

\[\text{92}^\text{Zr} \text{(p,d) reaction} \]

\[\gamma \rightarrow S_n \text{ populated} \]

\[\text{91}^\text{Zr} \]

\[\text{neutrons} \quad \text{protons} \]

<table>
<thead>
<tr>
<th>Excitation energy (MeV)</th>
<th>Counts per 80 keV</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>2</td>
<td>500</td>
</tr>
<tr>
<td>4</td>
<td>1000</td>
</tr>
<tr>
<td>6</td>
<td>1500</td>
</tr>
<tr>
<td>8</td>
<td>2000</td>
</tr>
<tr>
<td>10</td>
<td>2500</td>
</tr>
<tr>
<td>12</td>
<td>3000</td>
</tr>
<tr>
<td>14</td>
<td>3500</td>
</tr>
</tbody>
</table>

\[\times 10^3 \]

\[\text{Zr}^{92}\text{(p,d) particle singles spectra} \]

- Surrogate \((p,d)\) reaction

\[\text{neutron hole made in reaction} \]
Theory Challenge #1:
What is the structure of deep neutron holes?
Location?
Fragmentation?

Structure of deep neutron holes

Dispersive Optical Model
• Connects OMP for scattering to nuclear mean field:
 Empirical scattering information yields OMP at positive energies
 Mean field gives energy-averaged nuclear properties: single-particle E_{nlj}, spectral functions S_{nlj}, etc.

• DOMP of renewed interest for obtaining reliable potentials for scattering calculations

Gives energy-averaged nuclear properties
Theory Challenge #1
What is the structure of deep neutron holes?
Location?
Fragmentation?

Structure of deep neutron holes

Dispersive Optical Model

- Connects OMP for scattering to nuclear mean field:
 Empirical scattering information yields OMP at positive energies

 Mean field gives energy-averaged nuclear properties: single-particle E_{nlj}, spectral functions S_{nlj}, etc.

- DOMP of renewed interest for obtaining reliable potentials for scattering calculations

Spectral functions S_{nlj}

- Zr hole structure

Spectral function for n states in 92Zr for multiple nlj orbitals, normalized to spectral strength, exp. width $D=0.080$ MeV

Gives energy-averaged nuclear properties

Theory challenge #2: Reaction mechanism includes higher-order processes

First-order processes:
- neutron pickup makes deep hole
- Reaction calculation uses DWBA with S_{nlj} from DOMP

DWBA: Distorted-Wave Born Approximation

Theory Challenge #2:
Standard DWBA (p,d) calculations insufficient
Two-step mechanisms important
Theory challenge #2: Reaction mechanism includes higher-order processes

First-order processes:
- neutron pickup makes deep hole
- Reaction calculation uses DWBA with S_{nlj} from DOMP

DWBA: Distorted-Wave Born Approximation

Second-order processes:
- Inelastic scattering precedes or follows neutron pickup

Theory Challenge #2:
Standard DWBA (p,d) calculations insufficient
Two-step mechanisms important

^91Zr

Excitation energy (MeV)

Counts per 80 keV

^92Zr

(p,p',d) analogously
Theory Challenge #2:
Standard DWBA (p,d) calculations insufficient
Two-step mechanisms important

CN formation involves 2-step processes

- Include (p,p')(p',d) and (p,d')(d',d)
- Philosophy of pre-equilibrium theories: forward coupling, spectator approximation, no interference
- Structure information on inelastic states from experimental literature
- Couple all angular momenta explicitly

Second-order processes:
- Inelastic scattering proceeds or follows neutron pickup

Wide range of angular momenta possible: 0.5 to 11.5
Result: Compound-Nucleus Formation via (p,d)

High energies (region of interest):
- absolute cross section approximately reproduced, no normalization!
- 2-step processes dominate
- measurement and calculation agree, model assumptions valid
Result: Compound-Nucleus J^π Distribution

Spin-parity distribution:
- As function of excitation energy of ^{91}Zr
- Calculated from relative contributions of final J^π to total (p,d) cross section
- Contributions from spins up to $\sim J=10$

$$P_{(p,d\gamma)}(E) = \sum_{J,\pi} F_{(p,d)}^{\text{CN}}(E,J,\pi) \cdot G_{\gamma}^{\text{CN}}(E,J,\pi)$$
Select relevant 91Zr γ transitions

- Fit to data from 0.5 MeV below S_n to 1.5 MeV above S_n

Fit yields best set of parameters & uncertainty estimate.

$$P_{(p,d\gamma)}(E) = \sum_{J,\pi} F_{(p,d)}^{CN}(E,J,\pi) G^{CN,\gamma}(E,J,\pi)$$
\(^{90}\text{Zr}(n,\gamma) \) cross section from surrogate \((p,d)\) data

- Surrogate data constrains cross section up to \(E_n=1.5\) MeV
- Result in agreement with direct measurements & evaluations
- Result includes experimental & theoretical uncertainties

\[
\sigma_{(n,\gamma)} = \sum_{J,\pi} \sigma_{\text{n+target}}^{CN}(E,J,\pi) \cdot G_{\gamma}^{CN}(E,J,\pi)
\]

Surrogate method does not use \(D_0\) or \(\langle \Gamma_{\gamma} \rangle\)

Using best set of parameters to calculate \(^{90}\text{Zr}(n,\gamma) \)

\(0.0001\quad 0.001\quad 0.01\quad 0.1\quad 1\quad 10\)

\(E_n [\text{MeV}]\)

\(0.0001\quad 0.001\quad 0.01\quad 0.1\quad 1\quad 10\)

Cross section [mb]
$^{89}\text{Y}(p,d)$ singles results

- Procedure is analogous to the Zr case
- Special feature: Isobaric Analog States (IAS)
- Procedure is analogous to the Zr case
- Special feature: Isobaric Analog States (IAS)

\[P_{(p,d\gamma)}(E) = \sum_{J,\pi} F_{(p,d)}^{CN}(E,J,\pi) \cdot G_{\gamma}^{CN}(E,J,\pi) \]
\(^{87}\)Y\((n,\gamma)\) cross section from surrogate \((p,d)\) data

Surrogate data constrains cross section up to \(E_n=1.5\) MeV
Result differs from evaluations (based on regional systematics)
Result includes experimental & theoretical uncertainties

\[^{87}\text{Y}(n,\gamma) \]

Cross section determined from surrogate experiment compared to prior evaluations

Result includes experimental & theoretical uncertainties

Surrogate method does not use \(D_0\) or \(<\Gamma_{\gamma}>\)

Cross section from surrogate \((p,d)\) data

\(E_n \) [MeV]

\(\text{Cross Section [b]} \)

This work
TENDL 2015
Rosfond 2010

Fri Apr 27 10:56:44 2018
Escher et al, PRL 121, 025501 (2018)
Towards inverse-kinematics applications with RIBs…
…the (d,p) reaction
The (d,p) reaction – revisited for the RIB era

(d,p) reaction: ideal substitute for n+A?
The (d,p) reaction – revisited for the RIB era

Inclusive (d,p) reactions recently revisited: formalism

- Based on earlier work by Udagawa & Tamura and Ichimura, Austern & Vincent
- Goal: describe breakup-fusion, which contains CN formation
- Potel et al, PRC 92, 034611 (2015)
- Lei & Moro, PRC 92, 044616 (2015)

Applications:

- Comparison to 93Nb(d,p) inclusive cross sections - Potel et al., PRC 92, 034611 (2015)
- Predictions for 40,48,60Ca(d,pγ) – Potel et al., EPJ 53, 178 (2017)
- Application: Surrogate for 95Mo(n,γ) with Cizewski, Ratkiewicz et al.: Measurements in regular and inverse kinematics, at Texas A&M and ANL, respectively
The 95Mo($d,p\gamma$) benchmark

96Mo spin distribution

Surrogate ($d,p\gamma$) data

Data by A. Ratkiewicz, J. Cizewski, et al.

Spin distribution calculated by G. Potel
95Mo(n,γ) cross section from surrogate (d,pγ) data, reaction theory, and decay modeling

Excellent agreement of cross section with benchmark. This is encouraging for inverse-kinematics (d,p) measurements.
Excellent agreement of cross section with benchmark. This is encouraging for inverse-kinematics \((d,p)\) measurements. The theoretical description of \((d,p)\) is critical to obtaining \((n,\gamma)\).
Can we use inelastic scattering for \((n,\gamma)\)?

Advantages:
- Option for s-process branch points
- Potentially useful in inverse kinematics
- Recent progress in nuclear structure calculations: (Q)RPA transition densities for many isotopes now available
- Reaction populates wide range of \(E_{\text{ex}}\)

![Diagram showing s-process path and r-process region]

S-process path at branch point \(A\)
Often isotope \(A+1\) is long-lived

- \[Z+1 \rightarrow (n,\gamma) \rightarrow A+1 \rightarrow Z+1 \]
 - \((\beta^-)\)
- \[A-1 \rightarrow (n,\gamma) \rightarrow A \rightarrow (n,\gamma) \rightarrow A+1 \]
 - \((\beta^-)\)

Inelastic scattering:
Currently studied as indirect method to determine \((n,2n)\) cross sections.
The 90Zr(n,2n) reaction from inelastic scattering

Benchmark case:
Experiment populates compound nucleus in energy range $E_{ex} = 0 – 30$ MeV

Surrogate (3He,3He') reaction

91Zr

3He

3He'
Using inelastic scattering to determine \((n,\gamma)\)?

Experiment at LBNL:
- \(^{90,91,92}\text{Zr}(^3\text{He},^3\text{He}')\) and \(^{89}\text{Y}(^3\text{He},^3\text{He}')\)
- Measured by N.D. Scielzo et al
- Goal: determine \((n,2n)\) cross section
- Observed \(\gamma\)-rays in 3 isotopes, corresponding to \((n,\gamma), (n,n'), (n,2n)\)
- Inelastic scattering calculations using (Q)RPA transition densities
- Decay calculations simultaneously reproduce observed \(\gamma\)

Data from N.D. Scielzo

\[P_\gamma(E) \text{ for 2170 keV in } ^{91}\text{Zr} \]

Predictions vs. data

\[P_\gamma(E) \text{ for 890 keV in } ^{90}\text{Zr} \]

Predictions vs. data

\[P_\gamma(E) \text{ for 1512 keV in } ^{89}\text{Zr} \]

Predictions vs. data

For \((n,\gamma)\)

For \((n,n')\)

For \((n,2n)\)
Concluding remarks

General:

• Capture cross sections for unstable isotopes are important & difficult to obtain
• Indirect methods are critical & need further development
• Complementary methods are needed to reach large number of isotopes and to cross-check

Light-ion surrogate reactions:

• Different target-projectile combinations possible, method can be used at RIB facilities in inverse kinematics
• Method does not use D_0 or $<\Gamma_\gamma>$
• Understanding CN formation is important to account for spin-parity mismatch (inelastic scattering, pickup, stripping)
• Concept also applicable to other reactions: (p,γ), $(n,2n)$, etc.

A thank-you to my collaborators:
J. Burke, R. Casperson, R. Hughes, A. Ratkiewicz, N. Scielzo (LLNL)
S. Ota (Texas A&M), J. Cizewski (Rutgers), G. Potel (MSU/FRIB)
Extras
Selected Publications - 1

Reviews:

Letters, regular journal articles, and refereed proceedings:

Selected Publications - 3

R.O. Hughes, C.W. Beausang, T.J. Ross, J.T. Burke, R.J. Casperson, N. Cooper, J.E. Escher, K. Gell, E. Good, P. Humby, M. McCleskey, A. Saastimoinen, T.D. Tarlow, and I.J. Thompson, “Deducing the $\sigma^{(236)}$Pu(n,f), $\sigma^{(237)}$Pu(n,f) and $\sigma^{(238)}$Pu(n,f) cross sections using (p,t), (p,d) and (p,p) surrogate reactions,” *Phys. Rev. C* **90**, 014304 (2014)

