FRANK E. PAGE MEMORIAL SYMPOSIUM BROOKHAVEN NATIONAL LABORATORY MAY 2, 2018

Frank in ATLAS

Peter Loch

Department of Physics

University of Arizona

Frank in ATLAS:

- ✓ Tau & jet reconstruction, calibration, performance
- ✓ Software release testing & validation
 - ✓ SUSY physics group coordinator
 - √ general wise man for physics

H. Ma, F.E. Paige, S. Rajagopalan

Hadronic τ 's hard to separate from QCD jets and to measure, but offer unique information.

E.g., in SUSY expect differences from RGE running, gaugino mixing, and $\tilde{\tau}_L - \tilde{\tau}_R$ mixing. Best chance to probe chiral structure.

Have implemented τ reconstruction in Athena.

- Combines tracking and calorimeter information.
- Requires separation of EM and hadronic energy.
- Uses "energy flow" to reconstruct visible τ mass.
- Requires energy calibration.

Also test Athena usability by non-expert.

march 7, 2002
so test Athena usability by non-expert.
...the first contribution involving Frank in the electronic ATLAS archive!

H. Ma, F.E. Paige, S. Rajagopalan

Hadronic τ 's hard to separate from QCD jets and to measure, but offer unique information.

E.g., in SUSY expect differences from RGE running, gaugino mixing, and $\tilde{\tau}_L - \tilde{\tau}_R$ mixing. Best chance to probe chiral structure.

• Combine physics motivation

- Requires separation of EM and hadronic energy.
- Uses "energy flow" to reconstruct visible τ mass.
- Requires energy calibration.

H. Ma, F.E. Paige, S. Rajagopalan

Hadronic τ 's hard to separate from QCD jets and to measure, but offer unique information.

detector employment & signal use

and $\tilde{\tau}_L - \tilde{\tau}_R$ mixing. Best chance to probe chiral structure.

Have implemented τ reconstruction in Athena.

- Combines tracking and calorimeter information.
- Requires separation of EM and hadronic energy.
- Uses "energy flow" to reconstruct visible τ mass.
- Requires energy calibration.

H. Ma, F.E. Paige, S. Rajagopalan

Hadronic τ 's hard to separate from QCD jets and to measure, but offer unique information.

E.g., in SUSY expect differences from RGE running, gaugino mixing, and $\tilde{\tau}_L$ - $\tilde{\tau}_R$ mixing. Best chance to probe chiral structure.

Have implemented τ reconstruction in Athena.

- Combines tracking and calorimeter information.
- Requires separation of EM and hadronic energy.

Software testing & validation

• Requires energy canoration.

H. Ma, F.E. Paige, S. Rajagopalan

Hadronie t unique info

E.g., in SU

Collaboration with experimentalists

no mixing,

e, but offer

and $\tilde{\tau}_L - \tilde{\tau}_R$ mixing. Best chance to probe chiral structure.

Have implemented τ reconstruction in Athena.

- Combines tracking and calorimeter information.
- Requires separation of EM and hadronic energy.
- Uses "energy flow" to reconstruct visible τ mass.
- Requires energy calibration.

ergy density of the cell itself. We thus define the EM se

$$E_{\rm em} = \sum_{i={\rm cells}} E_i$$

is the energy in the cell *i* for the considered jet. We then define a jet weighted 4-vecto

$$E = \sum_{i = \text{cells}} w_i E_i \qquad \vec{P} = \sum_{i = \text{cells}} w_i \vec{P}_i$$

i-th cell energy and momentum (whose direction is defined by anitude is equal to E_i), and w_i are correction factors i^{t_i}

Tapidity of the also defined. Table I show

weight in the k-th calorimeter region, in the j-th energy density bin is defined to be:

$$w_i^{(k,j)} = \sum_{m=0}^{N_p - 1} a_m^{(k)} \log^m(E/V)_j$$
(3)

(the number of parameters used in the fit) is a number which depends on the region l $^{-l}F/V$), is defined at the lower edge of the j-th bin.

Now used for local hadronic calibration of calorimeter cell clusters

argy density of the cell itself. We thus define t

$$E_{\rm em} = \sum_{i={\rm cells}} E_i$$

is the energy in the cell i for the considered jet. We then define a jet weighted 4-vecto

$$E = \sum_{i=\text{cells}} w_i E_i$$
 $\vec{P} = \sum_{i=\text{cells}} w_i \vec{P}_i$

a *i*-th cell energy and momentum (whose direction is defined by anitude is equal to E_i), and w_i are correction factors e^{it}

rupidity bins are also defined. Table I show

weight in the k-th calorimeter region, in the j-th energy density bin is defined to be:

$$w_i^{(k,j)} = \sum_{m=0}^{N_p - 1} a_m^{(k)} \log^m(E/V)_j$$
(3)

(the number of parameters used in the fit) is a number which depends on the region $V^{-(F/V)}$, is defined at the lower edge of the *j*-th bin.

mining the energies of its com-

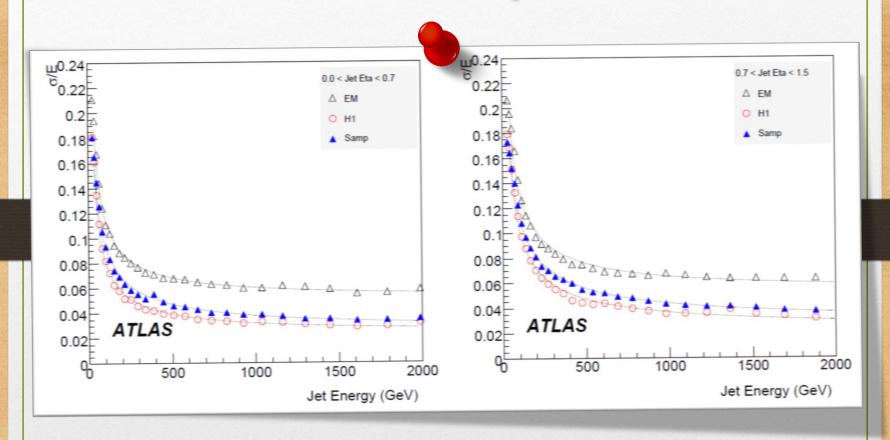
agy density of the cell itself. We thus define the EM Se

$$E_{\rm em} = \sum_{i={\rm cells}} E_i$$

is the energy in the cell i for the considered jet. We then define a jet weighted 4-vecto

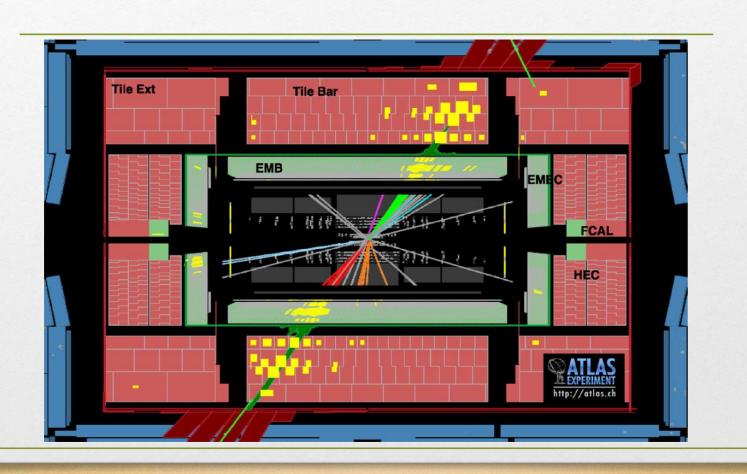
$$E = \sum w_i E_i \qquad \vec{P} = \sum w_i \vec{P}_i$$

Same functional form now used with different kinematic variables for overall smooth jet energy calibration functions in given bins of phase space!


suprainty bins are also defined. Table I show

me weight in the k-th calorimeter region, in the j-th energy density bin is defined to be:

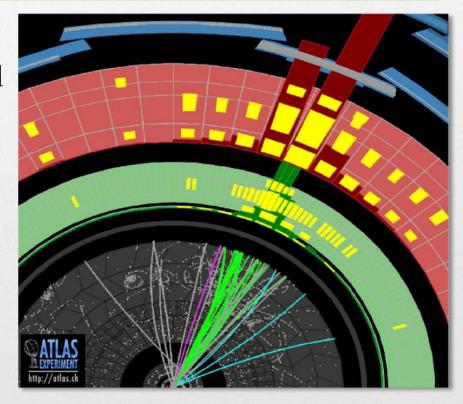
$$w_i^{(k,j)} = \sum_{m=0}^{N_p - 1} a_m^{(k)} \log^m(E/V)_j$$
(3)


(the number of parameters used in the fit) is a number which depends on the region l $^{-l}F/V$), is defined at the lower edge of the j-th bin.

And it worked very well, too!

Eur.Phys.J. C73 (2013) no.3, 2304

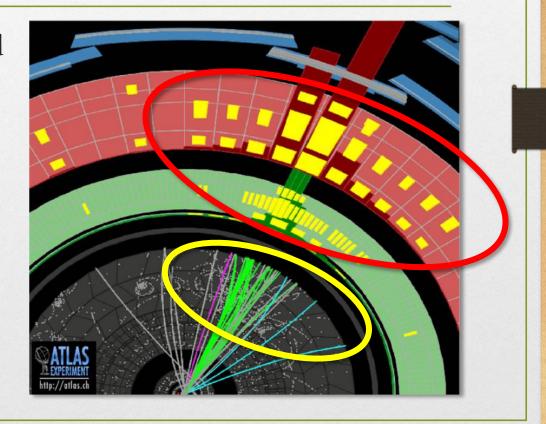
Data arrived in 2010...

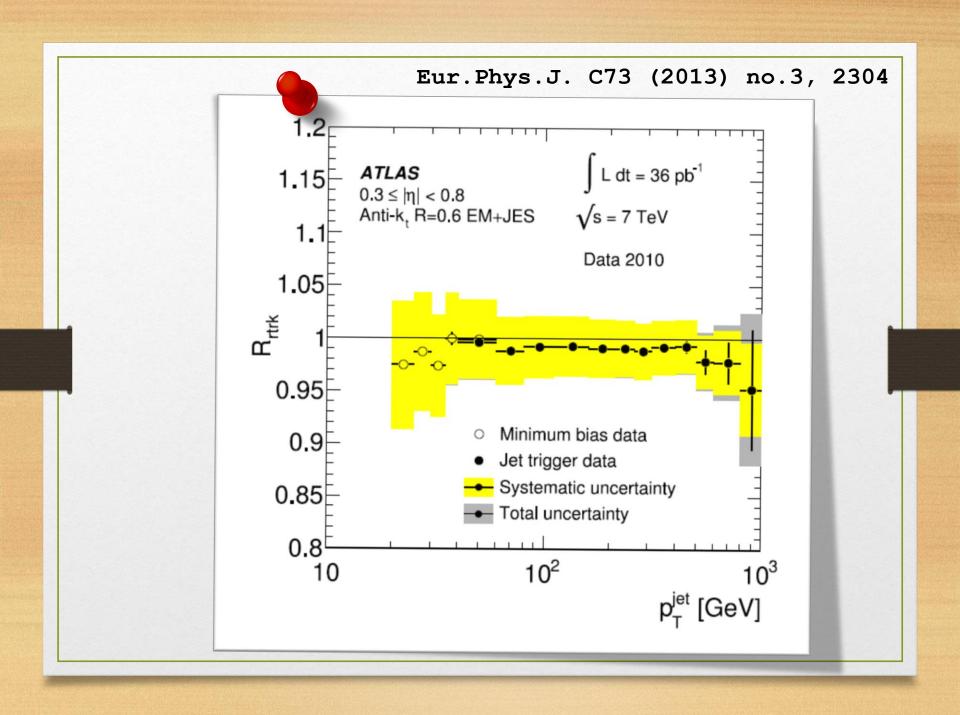


Data arrived in 2010... and Frank changed focus!

 How to validate simulation derived jet calibrations with data? Eur.Phys.J. C73 (2013) no.3, 2304

Data arrived in 2010... and Frank changed focus!


 How to validate simulation derived jet calibrations with data?



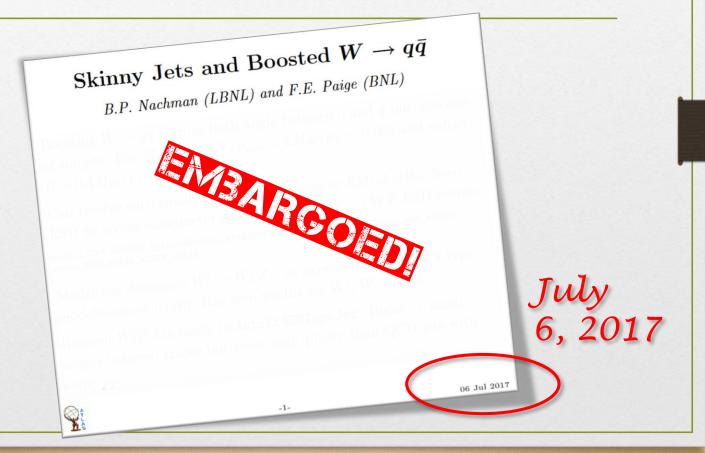
Eur.Phys.J. C73 (2013) no.3, 2304

Data arrived in 2010... and Frank changed focus!

• The R_{trk} method pioneered by Frank, Majorie Shapiro, *et al.* for jet response

Recent contributions

- Jet substructure for highly boosted jets how to tag a possible 2(3)-prong decay inside the jet?
- "Skinny jets" and cell-based jet mass challenging structural measurements ...


One of Frank's final contributions...

Skinny Jets and Boosted $W \to q \bar{q}$

B.P. Nachman (LBNL) and F.E. Paige (BNL)

06 Jul 2017

One of Frank's final contributions...

