Phase Evolution and Interfaces in Electrode Materials for Energy Storage

Dong Su(苏东) Center for Functional Nanomaterials, Brookhaven National Laboratory and Department of Materials Science and Engineering, Stony Brook University

Email: dsu@bnl.gov

Energy Storage: Fuel Cell vs Batteries

Outline

• Introduction:

Advanced Transmission Electron Microscopy

Structure-Property relation of Electrode Materials

 (i) Fe₃O₄ nanoparticle and thin film for LIB

(ii) PtPb-Pt nanoplate catalyst for fuel cell

Outlook

TEM: Transmission Electron Microscopy(e)

STEM : Scanning Transmission Electron Microscopy

Li, Su, Sun et al. Nano Letters, 2015

Electron energy-loss spectroscopy (EELS)

Kim, Su, Wang, et al. ACS Nano, 2015 5

Transmission Electron Microscopes at CFN

JEOL 1400 JEOL 2100F FEI-Talos 200 Hitachi HD2700C Titan 80-300 - ETEM Capability:

Versatile analytical & in-situ TEM Analytical STEM STEM-EELS

Soft & biological materials

Analytical instrument: 3D STEM and STEM-EDX Environmental & in-situ TEM

Approach: Combine Ex-situ and In-situ TEM

Correlating TEM results with other measurements

Huang et al. Science 330,1515 (2010) Lin *et al*. Nature Comm. 5, 3358 (2014). He, Su *et al*. Nano Lett. 15, 1437 (2015).

Example : Reaction interface of Sodiation of NiO

He, et al. and Su, Nano Lett. 15, 5755 (2015).

Example: In-situ TEM of Sodiation vs Lithiation

Sodiation

Lithiation

$NiO+Li^+/Na^+ + e^- \rightarrow Li_2O/Na_2O+Ni$

Same reaction different reaction process!

He, et al. and Su, Nano Lett. 15, 5755 (2015).

Outline

- Introduction: Advanced Transmission Electron Microscopy
- Structure-Property relation of Electrode Materials
 (i) Fe₃O₄ nanoparticle and thin film for LIB

(ii) PtPb-Pt nanoplate catalyst for ORR

Outlook

Lithiation of Inverse Spinel Fe₃O₄

8 Li⁺+ 8 e⁻+Fe₃O₄ \rightarrow 4Li₂O+ 3Fe

Capacity: 926 mAh/g

Samples from Chris Murray at Penn

Lithiation of Fe₃O₄: Intermediate Phase

He, et al. Murray and Su, Nature Comm. 7, 11441 (2016)

In-situ Electron Diffraction

Strain Sensitive STEM Imaging: BF/LAADF

Strain-sensitive: Bright-Field mode or Low-angle ADF mode

Comparison Between HAADF and LAADF

Li, et al. and Su, ACS Nano, 10, 9577(2016)

In-situ Bright-Field STEM

Fe₃O₄

LiFe₃O₄

Li₂O +Fe

HR TEM of Ex-situ/In-situ Samples

In-situ BF-STEM: Reaction Inhomogeneity

• The lithiation of nanomaterial is highly inhomogeneous

He, et al. Murray and Su, Nature Comm. 7, 11441 (2016)

Fe₃O₄ Epitaxial Thin Film

Under compressive strain from substrate, partially relaxed by interfacial defects Samples from Ying-Hao Chu's group

Hwang, et al. and Su, Angewandte Chemie, (2017)

In-situ STEM on Lithiation of Fe₃O₄ Film

- Formation of cracks at upper film
- Non-conversion area close to Fe₃O₄/SrTiO₃ interface

Phase Identification

• The formation of rock-salt phase close to interface

Phase Field Simulations: Formula

Lithium diffusion inside Fe_3O_4 : Cahn-Hilliard equation

$$\frac{\partial c}{\partial t} = \nabla M c \nabla (\Delta \mu)$$

Strain field in Fe_3O_4 thin film described by van Der Merwe's t heory:

$$\varepsilon_{ii}^{(in)} = \varepsilon_0^{(in)} \exp(-ax)$$

Strain coupling:

$$f_{el_c} = \frac{1}{2} K \varepsilon_{ii}^{(in)} \varepsilon_{ii}^{(0)}$$

J. Newman, *Electrochemical Systems*, Prentice Hall, **1991**.
J. H. Van der Merwe, *Proc. Phys. Soc.* 63, 616–637,(1950)
M. Tang, *et al.* and Y.-M. Chiang, *Chem. Mater.* 21, 1557–1571, (2009)

Phase Field Simulations: Surface vs. Bulk

Hwang, et al. and Su, Angewandte Chemie, DOI: 10.1002/ange.201703168, (2017)

Outline

- Introduction: Advanced Transmission Electron Microscopy
- Structure-Property relation of Electrode Materials
 (i) Fe₃O₄ nanoparticle and thin film for LIB

(ii)PtPb-Pt nanoplate catalyst for fuel cell

Outlook

PEMFC: Proton-exchange membrane fuel cell

ORR: $O_2 + 4H^+ \rightarrow 2H_2O$

Fuel Cell: Target vs Reality

□ Fuel Cell Device

State of the art of Pt nanoparticle

- □ Slow kinetics for ORR
 - Mass activity: ~0.11 A/mg
 - Specific activity: ~0.2 mA/cm²

Durability

Ref: Wang et al., Nano Lett. 11, 919(2011)

2020 DOE Technical Targets

- Mass activity@ 0.9 V: ~0.44 A/mg
- Specific activity @ 0.9 V : ~0.72 mA/cm²
- Electrochemical area loss: < 40%</p>
- Catalyst support loss: < 30%</p>
- PGM Total loading: 0.2 mg/cm² electrode
- Durability w/cycling (80 °C): 5000 hrs

Pt-based Multimetallic Catalysis

Alloying/Core shell

Shape control

Ref.: Markovic *et al.*, *Nat. Mater.* 7, 241,(2007) Markovic *et al.*, *Science*, 315, 493,(2007)

Optimization of Nanostructures

A: PtNi nanoframes

Yang and Markovic 's groups, Science 2014, 343, 1399

C: Ordered structure of Pt₃Co

Y. N. Xia's group, *Science* 2015, 349, 412

D: Stacking sequence of Pt(fcc)-Ru(hcp)

Abruna's group, Nature Materials, 2013,12,81

With Jia Wang and R. Adzic, Nature Comm., 2013,4,2466

PtPb-Pt Core-Shell Plate for ORR

• Excellent activity and stability! But why?

Synthesis and Electrochemical results by Huang's and Guo's groups

PtPb-Pt core-shell Nanoplate : Hexagonal@Fcc

- Core: PtPb/HCP vs Shell: Pt/FCC
- Interfacial coherence:
- Surface Pt and edge Pt
- Corner dislocations

Strain Analysis from Diffraction Patterns

Experimental results(FFT)

Simulations

PtPb-Pt Core-Shell: Biaxial Strain

Guo, Su, Huang et al. Science 354,1410(2016)

DFT Calculation: Binding Energy and Strain

DFT calculation by Xu zhang and Gang Lu

Outline

- Introduction: Advanced Transmission Electron Microscopy
- Structure-Property relation of Electrode Materials
 (i) Fe₃O₄ nanoparticle and thin film for LIB

(ii)PtPb-Pt nanoplate catalyst for fuel cell

Outlook

Outlook on In-situ/Operando TEM

- To reveal real-time and spatially-resolved m orphological, structural, chemical, and elect ronic state evolutions during physical and c hemical processes.
- To probe direct material response to multip le stimulus applied to the nanoscale system.
- To combine complimentary methodologies simultaneously and at various relevant leng th scales, enabling information acquisition i n extra dimensions.

Ref. H. Zheng et al., MRS Bulletin, 2015

Acknowledgement

• TEM work:

Dr. Kai He(now AP at Clemson), Dr. Eric Stach(Now at Penn), Dr. Jing Li(BNL/SBU), Dr. Sooyeon Hwang(BNL), Mr. K. Kisslinger(BNL), Dr. Huolin Xin(BNL), Dr. Yimei Zhu (BNL),

• Materials and tests:

Dr. Yiqian Yu(IOP), Dr. Xiao-qiang Yang(BNL), Prof. Gerb Ceder(Berkeley), Prof. Xin Li(Harvard), Prof. Sen Zhang (Virginia), Prof. Chris Murray (Penn), Dr . Feng Lin and Dr. Marca Doeff (LBNL), Prof. Ryan Richards(UC Mines) Dr. Ratko Adzic(BNL), Prof. Shouheng Sun(Brown), Prof. Shaojun Guo(Peking), Prof. Minhua Shao(HKUST), Prof. Xiaowei Teng(New Hampshire), Prof. Xiaoqing Huang(Soochow), Prof. Gang Wu(Buffalo)

• Theoretical calculations:

Prof. Yifei Mo(Maryland) Dr. Qingping Meng (BNL), Dr. Xu Zhang and Prof. Gang Lu(California State), Prof. Ju Li(MIT), Prof. Kejie Zhao(Purdue)

Thank you for your attention, 谢谢

