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Multi-Modal Synchrotron Approach 
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Multi-Dimensional X-ray Imaging 
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•  Nanoporous-Si Anode  
3D morphological Evolution 
o  X-ray Nano-tomography 
 
•  CuS Additives in Li-S batteries 
o Multi-modal: XRF, XAS and XRD  
 
•  In situ study of 3D Printing  

for future energy storage 
o Coherent X-ray Scattering: XPCS 
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Nanoporous Si for Li-ion Battery Anode 

• Immersing Mg2Si in Bi melt 

• Collecting the floating powders( ρBi >> ρSi) 

• Etching Bi from the collected powders 

• Filtering & drying  

Bi melt HNO3 

aq.sol 

Figures courtesy of Prof. Hidemi Kato ( Tohoku University) 
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Challenges in nanoporous Si anode 

nanoparticle Bulk 3DNP-Si 

Wada, Takeshi, et al. "Bulk-nanoporous-silicon negative electrode with extremely high 

cyclability for lithium-ion batteries prepared using a top-down process." Nano 

letters 14.8 (2014): 4505-4510. 

• Porosity: 60.4% 
 

• Ideal volume accommodation limit: 253% 
 

• Correspond lithiation capacity:  
– 2000 mAh/g   

• Capacity-dependent behavior      
o  1000 mA/h-g: over 1500 cycles 
o  2000 mA/h-g: < 500 cycles   

 
  3D morphological change 

     v.s. different charging capacity? 
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Capacity Dependent 3D Morphological Evolution  
of Nanoporous Si Anode 

Chong Zhao, et al., to be submitted 
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Mechanistic Understanding of Li-S Batteries  
with Hybrid Electrodes: Multi-functional Additive 

• Li-S battery: much higher energy density (6x by weight) & lower cost 

Low conductivity Capacity-Contributing 
Conductive Additives 

Metal Sulfide - Sulfur 
Hybrid Electrode 

CuS-S, FeS2-S,  
TiS2-S, etc 

Higher power capability 
Capacity↑ @ high rate discharge 

Poorly understood 
Interactions  

& Side-reactions 
 

• Hybrid electrodes utilizing metal sulfide additives: conductivity ↑ & capacity + 

• Interaction between components (sulfur cathode, additives, Li anode, & electrolyte)  
      at the system level & side-reactions : 
    complex, specific to each type of additive with vastly different behavior, poorly understood 
• Understanding mechanisms  guide designing better additives  Li-S performance ↑ 

Dissolution/Re-deposition 

Conventional closed-cell electrochemical characterization  
 average of different processes   no longer sufficient 
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Operando Multi-modal Synchrotron Investigation for Structural 
and Chemical Evolution of CuS Additive in Li-S battery 
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Ke Sun, Chonghang Zhao, Cheng-Hung Lin, Eli Stavitski, Garth Williams, Jaiming Bai, 
Eric Dooryhee, Klaus Attenkofer, Juergen Thieme, Yu-chen Karen Chen-Wiegart, 
Hong Gan, Scientific Reports (2017) 
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Operando Multi-modal Synchrotron Investigation for Structural 
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X-ray powder diffraction (XPD) 28-ID-2, NSLSII 
- Wavelength: 0.1838 & 0.2362 Å 
- Beam size: 0.5 mm2 

- Technique: X-ray Powder Diffraction 
 
Inner-Shell Spectroscopy (ISS) 8-ID, NSLSII 
- Beam energy: Cu K-edge (8979 eV) 
- Spot size: 0.8 mm × 0.3 mm (h × v) 
- Technique: X-ray Absorption Spectroscopy 

 
Sub-micron Resolution X-ray Spectroscopy (SRX),   
5-ID, NSLSII 
- Beam energy: 10 keV 
- Spot size: ~ 1 𝜇m 
- Technique: X-ray Fluorescence Microscopy 

Ke Sun et al., Scientific Reports (2017) 
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Operando X-ray Diffraction at XPD, NSLS-II 

• Reactions during discharge:  
• 2Li + 2CuS ⇒ Cu2S + Li2S (~2.14 V with slow rate)  

• 2Li2Sn -> Li2S2    (~2 V, liquid-solid reduction) 

• The only new peak emerging 

is Li2S(111) 

 

•  No Cu2S detected during the 

discharge in diffraction 

patter may be due to 

amorphous phases 

 

• Metal Cu is also not 

observed due to the cut-off 

voltage at 1.8 V. 
Ke Sun et al., Scientific Reports (2017) 
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Operando X-ray Diffraction at XPD, NSLS-II 
Lithiation and De-lithiation 
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Phase Evolution during Discharge  
by Operando X-ray Diffraction  

1) S (222) decreases right after 
lithiation 

  crystalline sulfur convers in to 
polysulfides  dissolve into the 
electrolyte 

2) Li2S (111) only appears at ~43% 
capacity 

  nucleation after the solid sulfur is 
fully converted into polysulfides and 
Li2S2 remains amorphous 

3) CuS (103) intensity only decreases 
until the end of discharge 

 conversion of Li2S2 to Li2S occurs 
ahead of CuS reduction 

 
 

The area of three strong peaks were integrated at each depth of discharge. 

Ke Sun et al., Scientific Reports (2017) 
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Operando X-ray Absorption Spectroscopy (XANES) 
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•  Series of operando Cu K-edge XANES spectra during cycling: 
No XANES spectral evolution until end of discharge (point f) 
 Consistent with Operando XRD 
• At the end of discharge (point f): two changes in the XANES spectum 

o  feature I, which is characteristic for CuS, in Fig. D becomes less prominent  

o  feature II, the edge jump shifts to lower energies Ke Sun et al., Scientific Reports (2017) 
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Operando X-ray Absorption Spectroscopy (EXAFS): 

Structural analysis after full discharge,  
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• the Cu-S coordination number is reduced from 2.5 to 2.1 
 An elongation of the average bond length from 2.27Å to 2.29Å.  
• The average composition of the discharged material ~ Cu1.3S. 
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X-ray Spectroscopic Imaging: morphology & chemistry 

Operando XRF studies on Cu dissolution/re-deposition 
 in Li-S battery with CuS additives 
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Operando XRF studies on Cu dissolution/re-deposition in 
 Li-S battery with CuS additives 

 

Cathode Anode 

Ke Sun et al., Scientific Reports (2017) 
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Mechanistic Understanding on CuS Additives 
Interaction in Li-S battery 
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The lithiation of CuS 
starts at the very end of 
discharge to form 
amorphous Cu2S at 
~1.95V.  During this 
process, CuS interacts 
strongly with soluble 
low order polysulfide 
species, either super 
saturated S2

2- or S2- . 
The dissolved Cu-ions 
then migrate from the 
cathode side to the 
anode side through the 
electrolyte, changing 
SEI layer and leading to 
capacity fade.   

 

S2
2- interacts with CuS  à  Cu+ dissolution 

  à  Deposition of Cu species on anode   

The crystalline sulfur 
cathode is 
completely 
consumed during 
the initial 21% of 
cell discharge, 
converted to high 
order polysulfide 
(Li2Sn, n = 4 to 8).   

Starting from ~25% to ~43% cell discharge (beginning of 
the plateau discharge region), the conversion of 
polysulfide to amorphous phase Li2S2 happened, 
followed by conversion of Li2S2 into Li2S by additional 
lithiation up to ~85% cell discharge.   Ke Sun et al., Scientific Reports (2017) 
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Meso-Scale Dynamics of 3D-Printing by In Situ Multi-modal 
Synchrotron Approach 
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3D printing energy-storage micro-devices, or micro-batteries  

Sun et al., Adv. Materials 2013 Fu et al., Adv. Materials 2016 Hu et al., Adv. Energy Mat. 2016 

Meso-structures determine critical properties in a 3D printed structure 
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Suite of beamlines with complementary techniques –  
Enabling time-resolved, operando, multi-modal and multi-dimensional studies 

Diffraction Scattering Imaging Spectroscopy 

Structure 

Chemistry 

Morphology 

(XPD): X-ray Powder Diffraction  
(ISS): Inner Shell Spectroscopy 

(HXN): Hard X-ray Nanoprobe 

(FXI): Full-Field X-ray Imaging 

(SRX): Sub-micron Resolution X-ray Spectroscopy 

(CMS): Complex Materials Scattering  

(CHX): Coherent Hard X-ray 

CMS 

XPD 

ISS 

SRX 
HXN 

FXI 

CHX 
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Multi-
modal 

Approach 

Potential research schemes and impact 

Beamline hardware Software 

User access 
Supporting facilities  

& functions 

Techniques 

Logistics 

Goal 

to identify the issues involved in utilizing techniques across multiple beamlines at NSLS-II, 
and in combining synchrotron techniques with other techniques, such as the electron-
based imaging methods at CFN.  

The Multi-Modal Issues Task Force @ NSLS-II 

Complex 

Chemistry   
spectroscopy 

Morphology  
 imaging 

Structure  
 diffraction 
& scattering 

Heterogeneous 

Li-S battery with CuS addtives 

Particles 
(material) ? 

Clusters 
(Electrodes) 

Interfaces & Devices 
(System) 
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Sustainable Energy, BNL: Hong Gan, Ke Sun 
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