NSLS-II User's Meeting 2018

Shedding Light on Atomically Thin Artificial Quantum Materials

Kyle Shen

0

0 0

Department of Physics Cornell University

transition metal oxide interfaces : a new frontier

bulk materials

- switching transition metal ions
- chemical doping (cation substitution)
- lattice parameters (cation radius)

interfaces

- broken symmetry @ interface
- lowered dimensionality
- chemical potential offsets
- epitaxial strain (lattice constants)

interfaces made from complex quantum materials

- control of electron density
- dimensional confinement
- strength of interactions
- mass of the carriers
- magnetic interactions
- relativistic or classical

conventional materials (Si, GaAs, Ge...)

more exotic building blocks with tunable properties and interactions!

conventional semiconductors

"correlated" quantum materials

the grand challenge : controlling & optimizing quantum materials

prediction

Superconductivity?

P. Hansmann *et al.*, *Phys. Rev. Lett* **103**, 016401 (2009)

synthesis

Courtesy of Schlom Group

integrated ARPES & oxide MBE system

GORDON AND BETTY

UNDA

Darrell Schlom

expanding the palette of available materials

J.W. Harter et al., PRL 109, 267001 (2012)

recent examples in atomically thin interface materials

- quantum materials in the ultrathin limit : atomically thin LaNiO₃
- enhanced high-T_c superconductivity in monolayer FeSe grown on SrTiO_3 $\,$

Rare-earth nickelates RENiO3

Phil King (Kavli Fellow; now faculty @ St. Andrews Univ)

Masaki Uchida (JSPS Fellow; now Asst. Prof. U. Tokyo)

Haofei Wei

metal-insulator transitions in ultrathin LaNiO3 films

LaNiO₃ is a correlated metal in bulk, but reducing its thickness below a few unit cells turns the system progressively more insulating

bulk LaNiO₃ exhibits a large mass renormalization LaNiO₃

in agreement with optical & thermodynamic measurements

P.D.C. King *et al*, *Nature Nanotechnology* **9**, 443 (2014) E.A. Nowadnick, J.P. Ruf et al., *Phys. Rev. B* **92**, 245109 (2015)

P.D.C. King et al, Nature Nanotechnology 9, 443 (2014)

Metal-insulator transition at 2 unit cells

Electronic structure evolution with LaNiO3 thickness

ordering tendencies in low-dimensional nickelates Experimental Theoretical

B. Lau & A.J. Millis, Phys. Rev. Lett. 110, 126404 (2013)

M. Uchida et al., Phys. Rev. Lett. 106, 027001 (2011)

X

La.Sr

Μ

(¥) 1 200

0

0

strip

0.5

Ordering instability likely onsets below 3 unit cells

Scientific Needs from NSLS-II

 can we directly detect static spin/charge ordering stabilized in the ultrathin limit?

 can we observe short-ranged spin fluctuations before static long-ranged order onsets?

• what is the effect of octahedral rotations and/or polar distortions near the film-substrate interface?

Ultrathin LaNiO₃

recent examples in atomically thin interface materials

- quantum materials in the ultrathin limit : atomically thin LaNiO₃
- enhanced high-T_c superconductivity in monolayer FeSe grown on SrTiO_3 $\,$

characteristics of superconductors

nature of the superconducting wavefunction

~ 99% of SC : $\chi(s_1, s_2) \propto (|\uparrow\downarrow\rangle - |\downarrow\uparrow\rangle)$

$$\Psi(r_1, s_1; r_2, s_2) = \phi(r_1, r_2)\chi(s_1, s_2)$$

$$iggl(egin{array}{c} arphi(r_1,r_2) & ext{spatial p} \ \chi(s_1,s_2) & ext{spin par} \end{array}$$

art

conventional BCS (Pb, Al, Nb), high Tc cuprates, Fe-SC

antisymmetric : spin singlet

very rare : $\chi(s_1,s_2) \propto | \uparrow \uparrow
angle$ symmetric : spin triplet

superconducting transition temperature (T_c)

highest T_c known superconductor : H₂S @ 203 K highest T_c ambient SC : HgBa₂Ca₂Cu₃O₈ @ 134 K highest T_c Fe-based SC : SmFeAsO ~ 56 K

interfacial enhancement of superconductivity

- idea of interfacial enhancement of SC dates back to Ginzburg (1964)
- small (10%) effects observed in metal films and cuprate thin films
- \bullet in bulk, FeSe has a $T_{\rm c}$ of 8 K, and is structurally the simplest of the Fe-based SCs
- initial measurements of \sim 60-70 K $T_{\rm c}{}^{\prime}{\rm s}$ of FeSe / SrTiO_3 performed by STM and ARPES

V. Ginzburg. *Phys. Lett.* **13**, 101 (1964) M. Strongin *et al.*, *Phys. Rev. Lett.* **21**, 1320 (1968) I. Bozovic *et al.*, *Phys. Rev. Lett.* **89**, 107001 (2002) Q.Y. Wang *et al.*, *Chin. Phys. Lett.* **29**, 017401 (2012)

central questions about monolayer FeSe / SrTiO₃

- what is the mechanism of the interfacial enhancement of $\mathsf{T}_c?$
- how does the T_c measured spectroscopically compare to other probes?
- what happens to the superconductivity as the FeSe film gets thicker?

challenges

- superconductivity of FeSe / SrTiO₃ monolayer does not survive removal into air (unless samples are capped)
- capped samples appear to exhibit lower T_c 's when measured *ex situ* than reported by *in situ* spectroscopic probes
- a given sample is not measured by different techniques; T_c's cannot be compared

what happens as the FeSe film gets thicker?

in situ probes (ARPES, STM) see no gap for films thicker than 1 UC

• superconducting gap disappears for all films thicker > 1 uc

ex situ measurements on capped films

SC observed for thicker capped films, but T_c appears to decrease

interfacial FeSe layer surface-sensitivity cannot see buried interface?

FeTe buffer

licon

aver

- capping layers believed to reduce $\mathsf{T}_{\rm c}$

with film thickness

ARPES measurements as a function of film thickness

no detectable SC gap

- ARPES data for 3 unit cell sample nearly identical to bulk FeSe
- No observable SC gap measured down to base temperatures

15 meV gap

100 K

81 K

63 K

54 K 45 K

30 K

16 K 8 K

-40

-80

gap closes ~ 60 K

n

Energy (meV)

40

80