

Resonant X-ray scattering at the nanoscale

Riccardo Comin Massachusetts Institute of Technology

NSLS-II & CFN 2018 Users' Meeting Brookhaven, 23 May 2018

- Strongly-correlated quantum solids
- Competing orders and nanoscale granularity
- Resonant Soft X-ray Scattering: in a nutshell
- Soft X-ray nanodiffraction at beamline CSX
- Scale-invariant spin textures in nickelates

Fundamental building blocks

Many-body phenomena

of single-particle w.f.

Many-body quantum order (macroscale phase coherence)

Reduce kinetic energy (W)

High magnetic fields Lattice engineering Doping Confining potentials (e.g., optical traps) Increase interactions (U)

Chemistry Electrostatics (dielectric screening)

Doping

Dimensionality

Reduce kinetic energy (\overline{W})

Increase interactions (U)

Strongly interacting systems

Strong interactions (U) Localized orbitals

Mr. Iron

Mr. Nickel

E. Dagotto, Science 309, 257 (2005)

E. Dagotto, Science 309, 257 (2005)

Phase segregation

Quantum matter is almost inevitably inhomogeneous at the nanoscale

Percolation phenomena

A. S. McLeod, Nat. Physics 13, 80 (2017)

Percolation phenomena

Colossal resistive switching

Y. Tomioka, et al., Physics of Manganites (1999)

A. S. McLeod, Nat. Physics 13, 80 (2017)

Charge order

25 Mn

Spin order

Emergent functionalities

Nanoscale

textures

Metal-insulator transition

Superconductivity

Scattering probes

Scattering probes

Resonant scattering

Resonant scattering

Kang et al, in preparation (2018)

Electronic orders at the nanoscale

Electronic orders at the nanoscale

WHY

- Nanoscale granularity:
 - Intrinsic (phase competition & segregation)
 - Extrinsic (disorder, defects, doping, ...)
- Scale-invariant phenomena:
 - Extended range of length scales (10 nm to 10 µm)
- Emergent physics at the edge or boundary:
 - Domain walls; lateral interfaces; nanoengineered structures

Scanning resonant nanodiffraction

Scanning resonant nanodiffraction

Zone-plate focusing optics: 75 nm spot size

Cubic nickelate perovskites (RNiO₃)

Torrance et al. PRB 1992

Metal insulator transition

Temperature (K)

Cubic nickelate perovskites (RNiO₃)

Torrance et al. PRB 1992

Goal: map antiferromagnetic order across metal-insulator transition

Magnetic order

Metal insulator transition

RECIPROCAL SPACE

Coherent magnetic scattering from spin-density wave in NdNiO₃

Johnny Pelliciari

Jiarui Li

RECIPROCAL SPACE

Coherent magnetic scattering from spin-density wave in NdNiO₃

Speckle pattern: coherent interference between magnetic domains

Johnny Pelliciari

Jiarui Li

First case study: spin-density-wave in NdNiO₃ thin films

RECIPROCAL SPACE

REAL SPACE (mapping)

Coherent magnetic scattering from spin-density wave in NdNiO₃

Nano-mapping of order parameter

SDW order parameter

IxI µm² square

Nanoscale inhomogeneity on length scales $0.1 - 10 \ \mu m$

Domain pinning = memory effect Possibly a hidden local parameter controlling domain nucleation

Domain pinning = memory effect Possibly a hidden local parameter controlling domain nucleation

Scale-invariant textures – a fractal magnetic landscape

NdNiO3 manifests near-critical behavior – static (quenched) spatial fluctuations appear at all length scales

Scale-invariant textures – a fractal magnetic landscape

NdNiO3 manifests near-critical behavior – static (quenched) spatial fluctuations appear at all length scales

Scanning resonant nanodiffraction

- Direct visualization of order parameter
- No phase retrieval needed
- Versatile (applies to any material)

- Slow, point-by-point scanning required (1-4 hrs)
- Spatial resolution limited by NA of optics (not detector)
 - I0-I5% throughput across ZP lenses

Electron-doping induced a colossal metal-insulator transition

Electron-doping induced a colossal metal-insulator transition

XAS shows doping induced crossover in electronic ground state

XPEEM mapping across Ni-L₃ edge (@ESM beamline)

XAS shows doping induced crossover in electronic ground state

XPEEM mapping across Ni-L₃ edge (@ESM beamline)

Doping induced phase separation as AFM order is suppressed.

The length scale of inhomogeneity is maximal when AFM order is weakest

Coherent Diffractive Imaging

Coherent Diffractive Imaging

Plane-wave CDI

Fresnel CDI

Chapman & Nugent, Nature Photonics 2010

Coherent Imaging

Coherent Diffractive Imaging

300 K

Metal-insulator transition in VO_2

Resonant holography

(few sec for a full hologram)

330 K

Vidas et al., arXiv:1612.07998 (2016)

Coherent Imaging

Coherent Diffractive Imaging

<u>CONS</u>

- Spatial resolution limited by NA of detector (10 nm)
- Fast acquisition (1-100 sec)
- No need for diffractive optics
- Depth resolution (3D Bragg CDI)

- Intensive computational effort (phase retrieval)
 - Sometimes requires sample pre-patterning
 - Beware dynamical scattering effects

Acknowledgments

MIT Photon Scattering Lab

Jiarui Li Jonathan Pelliciari Min Gu Kang Zhihai Zhu Abe Levitan Qian Song

BNL

C. Mazzoli S. Wilkins E. Vescovo J. Sadowski

Purdue

- F. Simmons
- E. Carlson
- S. Ramanathan

Universite de Geneve

S. Catalano M. Gibert J.-M. Triscone