Orbital domain dynamics in magnetite

Roopali Kukreja

Materials Science and Engineering UC Davis

NSLS II & CFN Users' Meeting 2018

5/29/2018

Moving beyond semiconductors

Metal-Insulator transition

Gated electronic switch (Mott FET)

Z. Yang, et al. Annu. Rev. Mater. Res. '11

Memristive device

F

Moving beyond semiconductors

Verwey transition in Magnetite (Fe_3O_4)

- One of the first known correlated electron systems (1939) \geq
- Shows 100 fold decrease in conductivity below T = 120 K \triangleright
- Ferrimagnet with full spin polarization no change in spin alignment during the transition

Low vs high temperature structure

c = 2a, Monoclinic tilt, $a \cdot 23^{\circ}$ (001/2), (001)

Inverse Spinel

 Fe^{+2} and Fe^{+3} in octahedral sites

Low vs high temperature structure

 Fe^{+2} and Fe^{+3} in octahedral sites

Three site Fe⁺³-Fe⁺²-Fe⁺³ distortions

After Senn et al. Nature '12

Low vs high temperature structure

UNIVERSITY OF CALIFORNIA

Orbital dynamics using coherent x-rays

- X-ray Photon Correlation Spectroscopy measurements at the CSX-1 beamline (NSLS-II)
- Speckle pattern at Fe L-edge to access fluctuations in orbital ordering

Domain dynamics near transition

Orbital dynamics near Verwey transition

Autocorrelation function

$$g_2(t) = \frac{\langle I(\tau)I(\tau+t)\rangle_{\tau}}{\langle I(\tau)\rangle_{\tau}^2}$$

- Intermediate Scattering Function ISF = $g_2 - 1$
 - $g_2(t) = 1 + A \exp [(-t/\tau)^{\beta}]$ β - stretching exponent, compressed shape τ - relaxation time scales vs temperature A - speckle contrast

Orbital dynamics near Verwey transition

$$g_2(t) = 1 + A \exp\left[(-t/\tau)^{\beta}\right]$$

- β ~1.5, stretching exponent, compressed shape,

First regime shows thermally activated Arrhenius behavior with an activation energy of be $\Delta E/k_B = 32 \pm 5 \text{ K}$

Orbital dynamics near Verwey transition

UCDAVIS UNIVERSITY OF CALIFORNIA

R. Kukreja, N. Hua et al., in review PRL (2018)

Time Resolved Experiment at LCLS

Peak brightness *increase* ~10¹² fs pulse length ~10'fs

Resonant soft x-ray diffraction (RSXD) endstation

Coherence Length and Monoclinic Tilt

Coherence Length and Monoclinic Tilt

0.0 -

0.1

Δβ (deg)

Peak Intensity

 \blacktriangleright drops to less than 10% within first 300 fs

 λ_{coh} and $\Delta\beta$

- Slower ps timescale (1.5 ps) \geq
- λ_{coh} decreases correlation length scales for low temperature ordering
- $\succ \Delta\beta$ relaxes towards high temperature cubic values

Coexisting insulating and metallic phase

Peak Intensity

- drops to less than 10% within first 300 fs
- shooting holes in 'trimeron' lattice

Coexisting insulating and metallic phase

Peak Intensity

- drops to less than 10% within first 300 fs
- shooting holes in 'trimeron' lattice

λ_{coh} and $\Delta\beta$

- Slower ps timescale (1.5 ps)
- > λ_{coh} decreases and relaxation of $\Delta\beta$ towards high temperature cubic values
- Phase separation into insulating and metallic regions

Blue – low temperature monoclinic phase Red – emerging metallic phase

S de Jong, R. Kukreja et al. Nat. Mater. '13

Presence of a Threshold

Summary

Domain dynamics near thermally induced Verwey transition. First regime shows thermally activated Arrhenius behavior with an activation energy of be $\Delta E/k_B = 32 \pm 5$ K. Second regime indicates phase separation into metallic and insulating domains.

Imaging optically induced phase separation of magnetite into metallic and insulating regions with timescale of 1.5 picoseconds.

Future Prospects

- Controlling nanoscale morphology heterostructures, epitaxial strain, doping etc.
- Role of nanoscale heterogeneities in phase transition
- Imaging spin fluctuations novel magnetic ordering, cluster phases
- Transport dynamics across heterostructures

TiO₂ Sub

Acknowledgements

Domain dynamics in magnetite

UC Davis – Jianheng Li UC San Diego - <u>Nelson Hua</u>, Oleg Shpyrko, Eric Fullerton NSLS II – Andi Barbour, Wen Hu, Claudio Mazzoli, Stuart Wilkins

Ultrafast phase separation in magnetite

SLAC – S. de Jong, W.S. Lee, D. H. Lu, M. Yi, R. Moore, M. Trigo, Hermann Dürr

Cologne - C. Trabant , C. F. Chang, M. Döhler, M. Buchholz and C. Schüßler-Langeheine

HZB Berlin - N. Pontius, T. Kachel, M. Beye and A. Föhlisch

LCLS - W. Schlotter, J. J. Turner and O. Krupin

Nanodiffraction studies of phase separation in Gd/LSCO

UC Davis – Ian Rippy, Jianheng Li, Yayoi Takamura

Group at UC Davis

Morris Yang, Chris Kohne, Ian Rippy, Kenneth Ainslie, Rahul Jangid, Jianheng Li, Lacey Trinh

Thank You

