Some aspects of nanoscale phenomenon in superconducting cuprates

Wei-Sheng Lee SIMES, SLAC National Accelerator Laboratory

NSLS-II 2018 User Meeting/Workshop

SNES

STANFORD INSTITUTE FOR MATERIALS & ENERGY SCIENCES The division of materials science at slac A joint institute of SLAC and Stanford University

Resonant Inelastic X-ray Scattering (RIXS)

Outline

- Collective Charge excitations
- Signature of dispersive CDW excitations
- CDW ground and implication of spatial inhomogeneity
- Summary

Dr. L. Chaix

CDW in cuprates

La-based

• La_{2-x}Sr_xNd_yCu_{1-y}O₄ (Nd-LSCO)

SLAC

- La_{2-x}Ba_xCuO₄ (LBCO)
- La_{2-x}Sr_xCuO₄ (LSCO)

Bi-based

- Bi₂Sr₂CuO_{6+d} (Bi-2201)
- Bi₂Sr₂CaCu₂O_{8+d}(Bi-2212)

Y-based

YBa₂Cu₃O_{6+x} (YBCO).

Hg- based

HgBa₂CuO₄ (Hg1201)

CDW in Bi2212

da Silva Neto et al. Science 343, 393 (2014).

- High fidelity CDW measurement is needed.
- Interaction with other degrees of freedom.
- CDW excitations

RIXS spectrum on under-doped Bi2212

CDW scattering in quasi-elastic region

Phonon softening at Q_{CDW}

E-ph coupling via RIXS

RIXS phonon cross section directly reflects the e-ph strength.

SLAC

L. J. P. Ament *et al.*, EPL **95**, 27008 (2011). T.P. Devereaux et al., PRX **6**, 041019 (2016).

Influence of CDW

- Phonon slightly soften at Q_{CDW}
- Hot-spot anomaly at Q_a.

Influence of CDW

SLAC

 Funnel-shape excitations emanate from Q_{CDW} and cause hot-spot phonon anomaly.

Influence of CDW

SLAC

• Dispersive CDW excitation in cuprate.

Outline

- Collective Charge excitations
- Signature of dispersive CDW excitations
- CDW ground state and implication of spatial inhomogeneity
- Summary

Dr. H. Jang

SLAC

Dr. S. Gerber

S. Gerber *et al.* Science 350, 949 (2015)H. Jang *et al.* PNAS 113, 14645 (2016).

Quasi-2D CDW with Short Correlation length

	Bi2201 ⁽¹⁾	Bi2212 ⁽²⁾	LSCO ⁽³⁾	Hg1201 ⁽⁴⁾	YBCO ⁽⁴⁾
ξ _a (a _o)	~ 7	~ 4	~ 8	~ 5	~ 16
ξ _c (c _o)	< 1	< 1	< 1	< 1	< 1
V (u.c.)	~ 50	~ 20	~ 64	~ 25	~ 256

• Very small correlation volume.

Possibly strongly limited by disorders!

What is the ground state CDW ?

- 1. R. Comin et al., Science 343, 390–392 (2014).
- 2. da Silva Neto et al., Science 343, 393-396 (2014).
- 3. T. Croft *et al., Phys. Rev. B* **89**, 224513 (2014).
- 4. W. Tabis et al. Nature Comm. 5, 5875 (2014).
- 5. G. Ghiringhelli et al., Science 337, 821-825 (2012).
- 6. J. Change et al., Nature Physics 8, 871 (2012).

Access to the ground state CDW

Obstacles:

- Disorders
- Superconductivity

Magnetic field as a tuning parameter

Obstacles:

- Disorders
- Superconductivity

Strategies:

- Study cleanest crystal
- Apply high magnetic field to suppress SC.

Linac Coherent Light Source (LCLS)

- *H* // c-axis of YBCO
- Shot-by-shot detection of diffraction pattern at fields up to 30 Tesla

Gerber, Jang et al., Science **350**, 949 (2015)

Field-induced CDW in ortho-VIII

Three-dimensionally ordered CDW

- $\xi_{\rm b} > 280$ Å, $\xi_{\rm c} \simeq 60$ Å
- *q*= 0.33 r.l.u.
- H_{3D}~18.7 T
- T_{3D}~45 K

- $\xi_{\rm b} > 280$ Å, $\xi_{\rm c} \sim 70$ Å
- q= 0.318 r.l.u.
- H_{3D}~15 T
- T_{3D}~50 K

Unidirectional 3D CDW

Coexisting 2D and 3D CDW

H. Jang et al. PNAS **113**, 14645 (2016).

The relation of 2D and 3D CDW order?

Nie *et al. PNAS* **111**, 7980–7985 (2014). H. Jang *et al., PNAS* **113**, 14645 (2016).

Universal tendency toward unidirectional incommensurate CDW order and a nonuniform distribution of the disorder strengths.

If true, what is the volume fraction between the 2D and 3D region?

Summary

- Evidence of dispersive CDW excitation and coupling to lattice degrees of freedom in Bi2212.
- Coexistence of 3D and 2D CDW may imply an spatially inhomogeneous evolution between CDW and SC under magnetic field.

Acknowledgement

SLAC & Stanford University

M. Hashimoto, Y. He, S. Chen, Z. X. Shen

S. A. Kivelson, T. P. Devereaux, B. Moritz

J. S. Lee, D. Zhu, L. Nie, A. V. Maharaj, C.-C. Kao

Pulsed Magnetic Project

Tohoku University H. Nojiri, S. Matsuzawa, H. Yasumura

University of British Columbia D. A. Bonn, R. Liang, W. N. Hardy

Max Planck Institute, Stuttgart

B. Keimer, , J. Porras, M. Mino

Argonne National Laboratory Z. Islam

RIXS Project

Politecnico di Milano, Italy Y. Y. Peng, L. Braicovich, G. Ghiringhelli

AIST, Japan S. Ishida, Y. Yoshida, H. Eisaki

U. Maryland R. L. Greene, T. Sarkar

ESRF N. B. Brookes

