Effects of background driven resolutions on jet substructure measurements

Kaya Tatar
Massachusetts Institute of Technology

The Definition of Jets in a Large Background, BNL, Upton, USA
June 26, 2018
γ-tagged jet substructure at CMS

Photon-tagged jet fragmentation function (FF) and jet shape (JS) results from CMS

Background (Bkg) sources

- **Photons** from neutral meson decays
 - → Subtracted based on shower shape
- **Tracks** and **jets** from PbPb UE
 - → Subtracted via event mixing

Photon-tagged jet fragmentation function (FF) and jet shape (JS) results from CMS

- Supplementary
 - \(p_T^\gamma > 60 \text{ GeV/c} \)
 - \(\text{anti-}k_T \text{ jet } R = 0.3 \)
 - \(p_T^{\text{jet}} > 30 \text{ GeV/c} \)
 - \(\Delta\phi_{\gamma j} > \frac{7\pi}{8} \)

- Preliminary
 - \(p_T^\gamma > 60 \text{ GeV/c} \)
 - \(\text{anti-}k_T \text{ jet } R = 0.3 \)
 - \(p_T^{\text{jet}} > 30 \text{ GeV/c} \)
 - \(\Delta\phi_{\gamma j} > \frac{7\pi}{8} \)

excess (depletion) of low-pT (high-pT) particles

larger fraction of jet energy carried at large distances
Background subtraction for tracks

isolated-photon+jet event

Raw tracks inside jet cone

MB event

Bkg tracks inside jet cone

Raw – Bkg (Bkg track subtracted)

CMS Supplementary

$\sqrt{s_{NN}} = 5.02 \text{ TeV}$

PbPb Data

γ+jet events

Cent. 0-10%

N_{jet} distributions

$1 \frac{dN_{\text{trk}}}{dN_{\text{jet}}}$

$\xi_{\text{jet}} = \ln \frac{|p_{\text{jet}}|^2}{p_{\text{trk}} \cdot p_{\text{jet}}}$

Large ξ \rightarrow low p_T particle

Kaya Tatar

June 26, 2018

arXiv:1801.04895
Size of background

- Interesting region is also the one with largest bkg
 - Large bkg \Rightarrow Large unc
- What type of observables are good?
 - Interesting region does not suffer large bkg/uninteresting things
 - No large slopes, not steeply falling
 - FF is good in this, JS not good

$S/B \approx 30\%$
$S/B \approx 15\%$
$S/B \approx 75\%$
Background subtraction methods

η-reflection
- No need to find matching events
- Statistics limited to one event
 - Cannot subtract jets
- Loss of analysis phase space
 - e.g. Exclude $|\eta| < 0.3$
- Self subtraction?

Event mixing
- Need to match event characteristics
 - Centrality, vertex, collision geometry
- High statistics

η-reflection for inclusive jet shapes

Event mixing for $Z+$jet correlations
Start with baseline

A lot of things happen already in pp

MPI

Initial-state radiation (ISR)

Final-state radiation (FSR)

...

and

Beam Remnants (BR)
MC Exercise

- Pythia 8.2, pp collisions, $\sqrt{s} = 5.02$ TeV
- Process = photon + jet
- LO process
- No detector effects

Processes in pp collisions: MPI, ISR, FSR
Happen the same way in pp and AA? Considered as background? Impact on jet substructure?

Left (Right) tail from FSR (ISR)
FF and JS in γ+jet MC

Observables constructed using charged particles with $p_T > 1$ GeV/c

\[r = \sqrt{(\eta_{\text{track}} - \eta_{\text{jet}})^2 + (\phi_{\text{track}} - \phi_{\text{jet}})^2} \]

\[\rho(r) = \frac{1}{\delta r} \sum_{\text{jets}} \sum_{\text{trk} \in [r_a, r_b]} \left(\frac{p_{T\text{trk}}}{p_{T\text{jet}}} \right) \]
Sensitivity To Hadronization

Pythia 8.2
γ + jet

$p_T^\gamma > 60$ GeV/c
$p_T^{\text{jet}} > 30$ GeV/c

Anti-k_T jet $R = 0.3$

$\frac{1}{N_{\text{jet}}} \frac{dN_{\text{particle}}}{d\xi_{\text{jet}}}$

$\xi_{\text{jet}} = \ln \left(\frac{p_T^{\text{jet}}}{p_T^\gamma} \cdot \frac{p_T^\gamma}{p_T^{\text{jet}}} \right)$

$\rho(r)$

Ratio
MPI, ISR, FSR effects

MPI effect of ~10% at $\xi \sim 4$

ISR effect of ~20% at $r=0.2-0.3$
Hard parton radiates to large angles

Fraction of energy radiated at angle ΔR

Fraction of energy inside ΔR

Radiation up to large angles ($\Delta R \sim 1.5$)

- Does η-reflection self-subtract?

Hard → parton produced at hard scattering
Final → daughters of “hard” partons right before hadronization
Add toys on top of baseline

We ~know how to correct/subtract some things
e.g. energy, multiplicity
Generally --> scalar quantities – > along 1D, direction of change is known

What about vector quantities ?
e.g. direction in 2D plane
Might estimate the **magnitude** of the change
But what about **direction** ?
Embedding Toy PbPb

1. Sample toy particles from PbPb Hydjet
2. Shoot them into Pythia event
3. Cluster jets using all (Pythia+toy) particles
 Correct jet energy by subtracting energy of toy particles → JES/JER factored out
4. Construct observables using Pythia particles only
Embedding Toy PbPb

A lot of particles

Mostly low energy
FF and JS in toy PbPb MC

No large change

~20% change at small r

== > Toy particles pull the jet axis
Higher-pt jets much less affected
• What is distorted here is the jet axis, a vector
 - Direction of change ambiguous
• Correlated with the position of particles
 - Not reproduced by random smearing
• Need to redefine jet angle?

\[\text{~20\% change at small } r \]
\[\Rightarrow \text{Toy particles pull the jet axis} \]
JS using WTA jet axis

- Standard jet axis determined via E-scheme
 - sum of 4-vec
- Winner-Take-All recombination scheme
 - In particular WTA-pt-scheme
 - Recombination p_r of p_i and p_j where

\[
p_{t,r} = p_{t,i} + p_{t,j},
\]
\[
\phi_r = \left(\frac{w_i \phi_i + w_j \phi_j}{w_i + w_j} \right),
\]
\[
y_r = \left(\frac{w_i y_i + w_j y_j}{w_i + w_j} \right),
\]
\[
w_i = \frac{p_{t,i}^n}{n \rightarrow \infty}
\]

== >
The new axis coincides with that of the harder of 2 components

Ref. FastJet v3.2.2 Doc
JS using WTA jet axis

- Standard jet axis determined via E-scheme
 - sum of 4-vec
- Winner-Take-All recombination scheme
 - In particular WTA-pt-scheme
 - Recombination p_r of p_i and p_j where

$$p_{t,r} = p_{t,i} + p_{t,j},$$

$$\phi_r = \frac{(w_i \phi_i + w_j \phi_j)}{(w_i + w_j)},$$

$$y_r = \frac{(w_i y_i + w_j y_j)}{(w_i + w_j)},$$

$$w_i = \frac{p_t^n}{n \to \infty}$$

Ref. FastJet v3.2.2 Doc

\Rightarrow

The new axis coincides with that of the harder of 2 components

Soft particles slightly removed
WTA axis in Toy PbPb MC

- Pythia 8.2
- $\gamma + \text{jet}$
- $p_T^\gamma > 60 \text{ GeV/c}$
- $p_T^{\text{jet}} > 30 \text{ GeV/c}$
- anti-k_T jet $R = 0.3$
- particle-level
- WTA jet axis

JS much more robust with WTA
Summary

• If want to subtract bkg,
 – Then consider the bkg size and how it distorts observable
 – Rethink / identify suitable observables
• There are things for which we can ~remove bkg effects
 – Where we know the direction of change and estimate its magnitude
 • e.g. energy, particle yields
• Things for which we cannot undo bkg effects
 – The direction of change not known and things happen in a correlated way
 – Studied effects using gen-level Pythia and toy PbPb
 – The case of JS
 • UE particles pull jet axis
 • One way to overcome – > change axis definition to WTA.
 • This effect distorts JS, but maybe it is an observable by itself

Acknowledgements: The MIT group’s work was supported by US DOE-NP.
BACKUP
Hard parton radiates to large angles

Fraction of energy radiated at angle ΔR

Hard \rightarrow parton produced at hard scattering
Final \rightarrow daughters of “hard” partons right before hadronization

Radiation up to large angles ($\Delta R \sim 1.5$)

\rightarrow Does η-reflection self-subtract?
Embedding Toy PbPb

PbPb Hydjet
Cent:0-10%
$|\eta| < 2.5$

charged particles
neutral particles
FF and JS in toy PbPb MC – high-pt

$\sqrt{s} = 5.02$ TeV

$\gamma + \text{jet}$

$|p_T^\gamma| > 60$ GeV/c

$|p_T^{\text{jet}}| > 90$ GeV/c

anti-k_T jet $R = 0.3$

particle-level

Ratio

Pythia 8.2

+ Jet

Pythia + Toy PbPb

p_T^{γ}

p_T^{jet}

anti-k_T jet $R = 0.3$

particle-level

$\zeta = \ln \left(\frac{|p_T^{\text{jet}}|^2}{|p_T^{\text{final}}|^2} \right)$
JS using WTA axis: q vs g

quark jets

- **pp, $\sqrt{s} = 5.02$ TeV**
- Pythia 8.2
- $\gamma +$ jet
- $p_{T}^{\gamma} > 60$ GeV/c
- $p_{T}^{jet} > 30$ GeV/c
- anti-k_T jet $R = 0.3$
- particle-level

- standard jet axis (E scheme)
- WTA jet axis

gluon jets

- **pp, $\sqrt{s} = 5.02$ TeV**
- Pythia 8.2
- $\gamma +$ jet
- $p_{T}^{\gamma} > 60$ GeV/c
- $p_{T}^{jet} > 30$ GeV/c
- anti-k_T jet $R = 0.3$
- particle-level

- standard jet axis (E scheme)
- WTA jet axis
JS out of cone

standard

pp, $\sqrt{s} = 5.02$ TeV

Pythia 8.2

$\gamma + \text{jet}$

$p_{T}^\gamma > 60$ GeV/c

$p_{T}^{\text{jet}} > 30$ GeV/c

anti-k_T jet $R = 0.3$

particle-level

- inclusive
- quark
- gluon

WTA

pp, $\sqrt{s} = 5.02$ TeV

Pythia 8.2

$\gamma + \text{jet}$

$p_{T}^\gamma > 60$ GeV/c

$p_{T}^{\text{jet}} > 30$ GeV/c

anti-k_T jet $R = 0.3$

particle-level

WTA jet axis

- inclusive
- quark
- gluon
Isolated photon+jet

\[LHC, \, pp \rightarrow \gamma_{\text{isol}} + X @ \sqrt{s} = 14 \text{ TeV}, \, y = 0 \]

\(R_{\text{isol}} = 0.4, \, E_{\text{T}}^{\text{had}} < 4 \text{ GeV} \)

\begin{align*}
\text{Compton: } & q \, g \rightarrow \gamma \, q \\
\text{Annihilation: } & q \, \bar{q} \rightarrow \gamma \, g \\
\text{Fragmentation: } & \gamma \rightarrow q \, q
\end{align*}

\(\text{JETPHOX NLO (NNPDF2.1, } \mu_{F} = E_{T}^{\gamma} \)
Bkg subtraction for jets and tracks

- MB event mixing technique
 - Estimate the bkg from fake jets and bkg tracks by constructing the observable using jets and tracks in matching MB events
- For each signal event find MB events with very close
 - centrality bin
 - vertex position in z-direction
 - event plane angle
Analysis steps: bkg tracks

isolated-photon+jet event

MB event

RAW jets
RAW-BKG tracks

BKG tracks

MB event mixing technique

How to estimate the bkg from jets/tracks?
– construct the observable using jets/tracks in matching MB events
Analysis steps – bkg jets

isolated-photon+jet event

MB event

\(\gamma \)

 RAW tracks

 RAW-BKG jets

RAW tracks

N RAW jets – N BKG jets

RAW-BKG jets

RAW-BKG tracks
Bkg subtraction: tracks and jets

Raw tracks inside jet cone
- Bkg tracks inside jet cone
= Raw – Bkg
(bkg track subtracted)

Raw jets
- Bkg jets
= Raw – Bkg
(bkg track and bkg jet subtracted)
Bkg subtraction for jets

Raw jets (bkg track subtracted)

Bkg jets (bkg track subtracted)

Raw – Bkg (bkg track and bkg jet subtracted)
In general the mapping depends on η_{jet}, η_{trk} and $\Delta R (\text{jet, trk})$. The solid and dashed lines are the extreme cases for a given η_{jet}.

\[\xi_{\text{jet}} = \ln \frac{|p_{T_{\text{jet}}}|^2}{p_{T_{\text{trk}}} p_{T_{\text{jet}}}} \]
If $\Delta R \text{ (jet, trk)} = 0$, then the mapping becomes η-indep.
For $50 < p_T^{\text{jet}} < 300$ GeV range,
- there are 8-13 ch. with $p_T^{\text{trk}} > 0.5$ GeV
- there are 5-10 ch. with $p_T^{\text{trk}} > 2$ GeV inside the jet.