Transverse Motion of Quarks in Nuclei

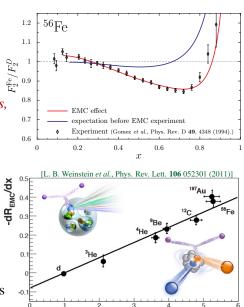
Ian Cloët Argonne National Laboratory

Short-range Nuclear Correlations at an Electron-Ion Collider

Center for Frontiers in Nuclear Science, 5-7 September 2018

QCD and Nuclei

- Understanding origin of the EMC effect is critical for a QCD based description of nuclei
- Important question: In what processes, and at what energy scales, do quarks and gluons become the effective degrees of freedom?
- Modern explanations based around medium modification of the bound nucleons
 - is modification caused by *mean-fields* which modify all nucleons all of the time or by *SRCs* which modify some nucleons some of the time?
- Microscopic calculations/predictions
 that describe nucleon and nuclear
 structure only exist in mean-field approach



 $a_{a}(A/d)$

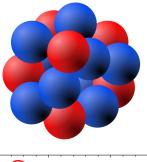
Nucleons in Nuclei

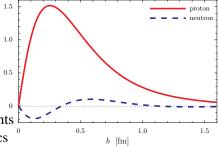
- Nuclei are extremely dense:
 - proton rms radius is $r_p \simeq 0.85$ fm, corresponds hard sphere $r_p \simeq 1.10$ fm
 - ideal packing gives $\rho \simeq 0.13 \, {\rm fm}^{-3}$; nuclear matter density is $\rho \simeq 0.16 \, {\rm fm}^{-3}$
 - 20% of nucleon volume inside other nucleons nucleon centers $\sim 2 \text{ fm}$ apart
- For realistic charge distribution 25% of proton charge at distances r > 1 fm
- Natural to expect that nucleon properties are modified by nuclear medium – even at the mean-field level

• in contrast to traditional nuclear physics

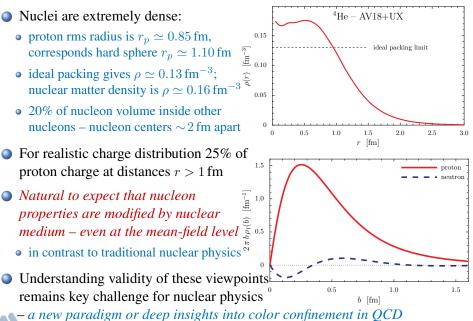
Understanding validity of these viewpoints remains key challenge for nuclear physics

- a new paradigm or deep insights into color confinement in QCD



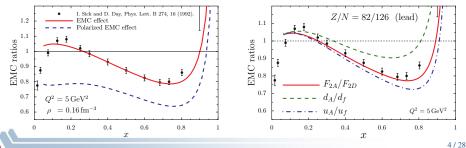


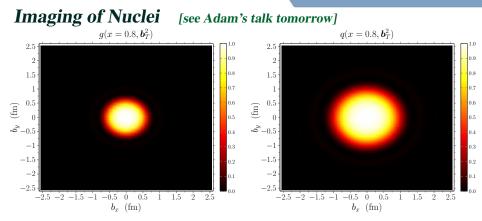
Nucleons in Nuclei



Understanding the EMC effect

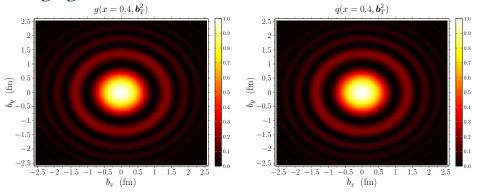
- The puzzle posed by the EMC effect will only be solved by conducting new experiments that expose novel aspects of the EMC effect
- Measurements should help distinguish between explanations of EMC effect e.g. whether *all nucleons* are modified by the medium or only those in SRCs
- Important examples are measurements of the EMC effect in polarized structure functions & the flavor dependence of EMC effect
- A JLab experiment has been approved to measure the spin structure of ⁷Li
- Flavor dependence will be accessed via JLab DIS experiments on ⁴⁰Ca & ⁴⁸Ca but parity violating DIS stands to play the pivotal role (maybe at EIC)





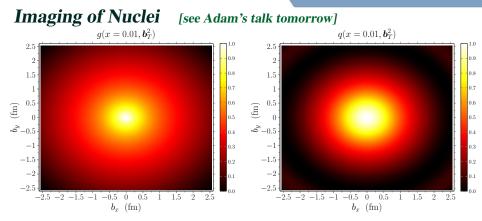
- Next step is the quark and gluon imaging/tomography of nuclei [JLab, EIC, Fermilab, ...]
- Key example is nuclear GPDs provides a spatial tomography of nuclei
 spatial location of the quarks and gluons, their variation with x, and radii
- Most directly addresses the question: How does the nucleon-nucleon interaction arise from QCD?

[see Adam's talk tomorrow]



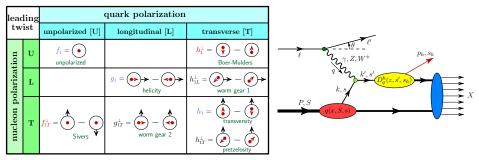
- Next step is the quark and gluon imaging/tomography of nuclei [JLab, EIC, Fermilab, ...]
- Key example is nuclear GPDs provides a spatial tomography of nuclei
 spatial location of the quarks and gluons, their variation with x, and radii
- Most directly addresses the question: How does the nucleon-nucleon interaction arise from QCD?

Imaging of Nuclei



- Next step is the quark and gluon imaging/tomography of nuclei [JLab, EIC, Fermilab, ...]
- Key example is nuclear GPDs provides a spatial tomography of nuclei
 spatial location of the quarks and gluons, their variation with x, and radii
- Most directly addresses the question: How does the nucleon-nucleon interaction arise from QCD?

Probing Transverse Momentum



SIDIS cross-section on nucleon has 18 structure functions – factorize as:

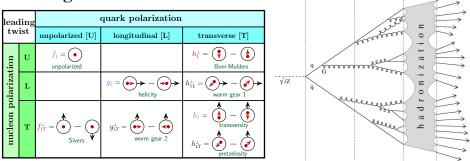
$$F(x, z, P_{h\perp}^2, Q^2) \propto \sum f^q(x, \boldsymbol{k}_T^2) \otimes D_q^h(z, \boldsymbol{p}_T^2) \otimes H(Q^2)$$

• reveals correlations between parton transverse momentum, its spin & target spin

Fragmentation functions are particularly important, but also challenging

• potentially fragmentation functions can shed the most light on confinement and DCSB – because they describe how a fast moving (massless) quark or gluon becomes a tower of hadrons

Probing Transverse Momentum



SIDIS cross-section on nucleon has 18 structure functions – factorize as:

$$F(x, z, P_{h\perp}^2, Q^2) \propto \sum f^q(x, \boldsymbol{k}_T^2) \otimes D_q^h(z, \boldsymbol{p}_T^2) \otimes H(Q^2)$$

• reveals correlations between parton transverse momentum, its spin & target spin

Fragmentation functions are particularly important, but also challenging

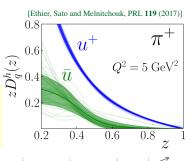
• potentially fragmentation functions can shed the most light on confinement and DCSB – because they describe how a fast moving (massless) quark or gluon becomes a tower of hadrons

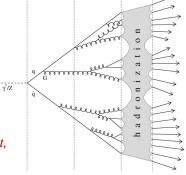
Fragmentation Functions

Fragmentation functions describe how a fast moving quark or gluon fragments to form hadrons (hadronization); *spin-independent:*

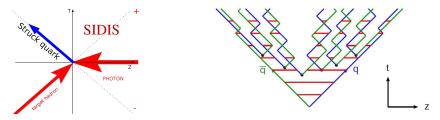
$$D_q^h(z) = \frac{z}{12} \hat{\sum}_n \int \frac{d\xi^-}{2\pi} e^{ip^+\xi^-/z} \\ \times \left\langle p(h), p_n \left| \bar{\psi}(0) \right| 0 \right\rangle \gamma^+ \left\langle 0 \left| \psi(\xi^-) \right| p(h), p_n \right\rangle$$

- Physical interpretation (on the light-front): the number density for a hadron h in a dressed-quark q to have a fraction z of the quark light-cone momentum $(p^+ = z k^+)$
- Characteristics of fragmentation processes must be dramatically influenced by structure of quark and gluon propagators, confinement, and DCSB.

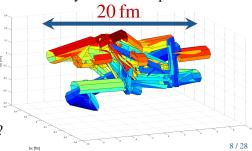




Current Treatments of Fragmentation Functions



- Current state-of-the-art treatments of fragmentation functions are usually, in part, semi-classical e.g. PYTHIA and LUND model
- Implementation and interpretation relies heavily on the concepts of flux tubes or strings
- Difficult to gain insight into QCD with this framework
- Are 20 fm flux tubes conceivable?
 - What about confinement?
 - How does this change in-medium?



Theory approaches to EMC effect

To address the like EMC effects must determine e.g. nuclear PDFs, TMDs:

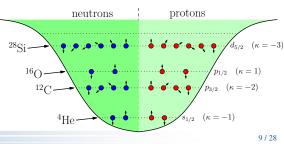
$$q_A(x_A) = \frac{P^+}{A} \int \frac{d\xi^- \boldsymbol{\xi}_T}{2\pi} e^{ix_A P \cdot \boldsymbol{\xi}/A} \langle A, P | \overline{\psi}_q(0) \, \boldsymbol{\gamma}^+ \, \psi_q(\xi^-, \boldsymbol{\xi}_T) | A, P \rangle \Big|_{\boldsymbol{\xi}^+ = 0}$$

Common to approximate using convolution formalism

$$q_A(x_A, \boldsymbol{k}_T^2) = \sum_{\alpha} \int_0^A dy_A \int_0^1 dz \,\,\delta(x_A - y_A z) \int d^2 \boldsymbol{q}_T \int d^2 \boldsymbol{\ell}_T \\ \delta(\boldsymbol{\ell}_T - \boldsymbol{k}_T + z \, \boldsymbol{q}_T) \,\,f_A^{\alpha}(y_A, \boldsymbol{q}_T^2) \,\,q_{\alpha}(z, \boldsymbol{\ell}_T^2)$$

• $\alpha = (bound)$ protons, neutrons, pions, deltas. ...

For TMDs must Lorentz transform nucleon to the frame where the nucleus has zero transverse momentum



Theory approaches to EMC effect

To address the like EMC effects must determine e.g. nuclear PDFs, TMDs:

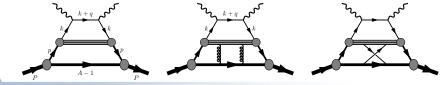
$$q_A(x_A) = \frac{P^+}{A} \int \frac{d\xi^- \boldsymbol{\xi}_T}{2\pi} e^{ix_A P \cdot \boldsymbol{\xi}/A} \langle A, P | \overline{\psi}_q(0) \, \boldsymbol{\gamma}^+ \, \psi_q(\xi^-, \boldsymbol{\xi}_T) | A, P \rangle \Big|_{\boldsymbol{\xi}^+ = 0}$$

Common to approximate using convolution formalism

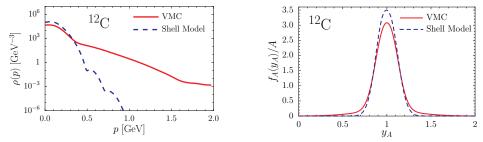
$$q_A(x_A, \boldsymbol{k}_T^2) = \sum_{\alpha} \int_0^A dy_A \int_0^1 dz \,\,\delta(x_A - y_A z) \int d^2 \boldsymbol{q}_T \int d^2 \boldsymbol{\ell}_T \\ \delta(\boldsymbol{\ell}_T - \boldsymbol{k}_T + z \, \boldsymbol{q}_T) \,\,f_A^{\alpha}(y_A, \boldsymbol{q}_T^2) \,\,q_{\alpha}(z, \boldsymbol{\ell}_T^2)$$

• $\alpha = (bound)$ protons, neutrons, pions, deltas. ...

- $q_{\alpha}(z, \ell_T^2)$ TMDs of quarks q in bound hadron α
- $f_{\alpha}(y_A, q_T^2)$ TMDs of hadron in nucleus

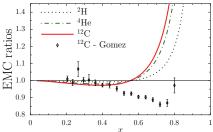


Nucleon Momentum Distributions in Nuclei



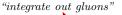
- Modern GFMC or VMC nucleon momentum distributions have significant high 1.4 momentum tails
 - indicates momentum distributions contain SRCs: ~20% for ¹²C
- Light-cone momentum distribution:

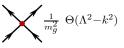
$$f(y_A) = \int \frac{d^3 \vec{p}}{(2\pi)^3} \,\delta\left(y_A - \frac{p^+}{P^+}\right) \,\rho(p)$$



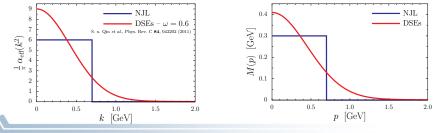
Naive SRCs introduce effect of opposite sign to EMC effect

Quarks, Nuclei, and the NJL model



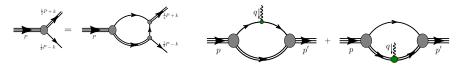


- this is just a modern interpretation of the Nambu–Jona-Lasinio (NJL) model
 model is a Lagrangian based covariant QFT, exhibits dynamical chiral symmetry
- breaking & quark confinement; elements can be QCD motivated via the DSEs
- Quark confinement is implemented via proper-time regularization
 - quark propagator: $[p m + i\varepsilon]^{-1} \rightarrow Z(p^2)[p M + i\varepsilon]^{-1}$
 - wave function renormalization vanishes at quark mass-shell: $Z(p^2 = M^2) = 0$
 - confinement is critical for our description of nuclei and nuclear matter



Nucleon Electromagnetic Form Factors

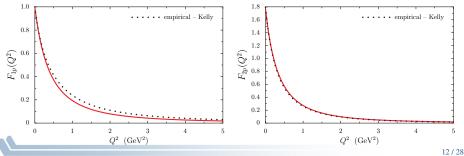
Nucleon = quark+diquark Sorm factors given by Feynman diagrams:



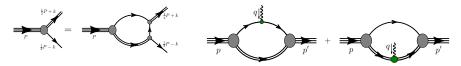
Calculation satisfies electromagnetic gauge invariance; includes

- dressed quark–photon vertex with ρ and ω contributions
- contributions from a pion cloud

[ICC, W. Bentz and A. W. Thomas, Phys. Rev. C 90, 045202 (2014)]



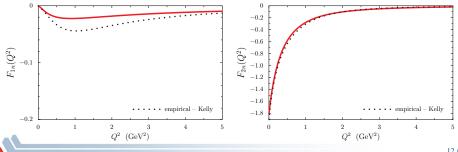
Nucleon Electromagnetic Form Factors



Calculation satisfies electromagnetic gauge invariance; includes

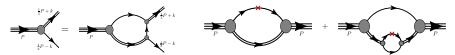
- dressed quark–photon vertex with ρ and ω contributions
- contributions from a pion cloud

[ICC, W. Bentz and A. W. Thomas, Phys. Rev. C 90, 045202 (2014)]



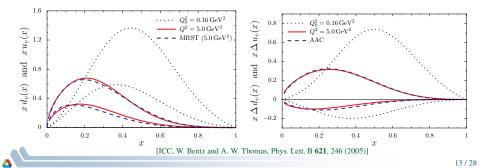
Nucleon quark distributions

• Nucleon = quark+diquark • PDFs given by Feynman diagrams: $\langle \gamma^+ \rangle$



Covariant, correct support; satisfies sum rules, Soffer bound & positivity

 $\langle q(x) - \bar{q}(x) \rangle = N_q, \ \langle x u(x) + x d(x) + \ldots \rangle = 1, \ |\Delta q(x)|, \ |\Delta_T q(x)| \leqslant q(x)$

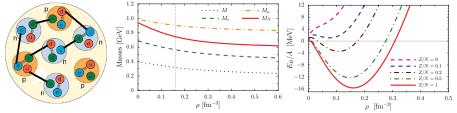


NJL at Finite Density

Finite density (mean-field) Lagrangian: $\bar{q}q$ interaction in σ , ω , ρ channels

$$\mathcal{L} = \overline{\psi}_q \left(i \not\partial - M^* - \notV_q \right) \psi_q + \mathcal{L}'_{\mathcal{L}}$$

Fundamental physics – mean fields couple to the quarks in nucleons



Quark propagator:

$$S(k)^{-1} = \not k - M + i\varepsilon \longrightarrow S_q(k)^{-1} = \not k - M^* - \not V_q + i\varepsilon$$

• Hadronization + mean-field \implies effective potential (solve self-consistently)

$$V_{u(d)} = \omega_0 \pm \rho_0, \qquad \omega_0 = 6 G_\omega \left(\rho_p + \rho_n \right), \qquad \rho_0 = 2 G_\rho \left(\rho_p - \rho_n \right)$$

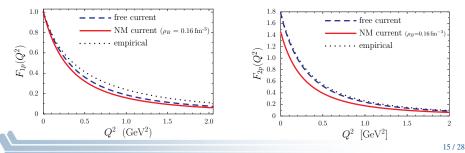
•
$$G_{\omega} \iff Z = N$$
 saturation & $G_{\rho} \iff$ symmetry energy

Nucleons in the Nuclear Medium

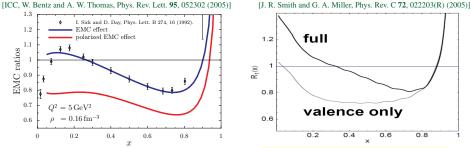
- For nuclear matter find that quarks bind together into color singlet nucleons
 - however contrary to traditional nuclear physics approaches these quarks feel the presence of the nuclear environment
 - as a consequence bound nucleons are modified by the nuclear medium
- Modification of the bound nucleon wave function by the nuclear medium is a *natural consequence* of quark level approaches to nuclear structure

For a proton in nuclear matter find

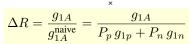
- Dirac & charge radii each increase by about 8%; Pauli & magnetic radii by 4%
- $F_{2p}(0)$ decreases; however $F_{2p}/2M_N$ almost constant μ_p almost constant



EMC and Polarized EMC effects

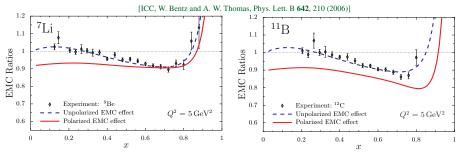


Definition of polarized EMC effect:ratio equals unity if no medium effects



- Large polarized EMC effect results because in-medium quarks are more relativistic (M* < M)
 - lower components of quark wave functions are enhanced and these usually have larger orbital angular momentum
 - in-medium we find that quark spin is converted to orbital angular momentum
- A large polarized EMC effect would be difficult to accommodate within traditional nuclear physics and many other explanations of the EMC effect

EMC effects in Finite Nuclei

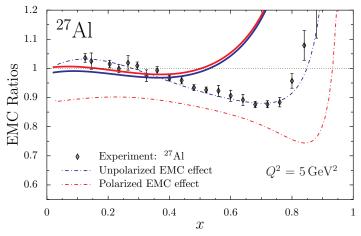


Spin-dependent cross-section is suppressed by 1/A

- should choose light nucleus with spin carried by proton e.g. \implies ⁷Li, ¹¹B,...
- Effect in ⁷Li is slightly suppressed because it is a light nucleus and proton does not carry all the spin (simple WF: $P_p = 13/15$ & $P_n = 2/15$)
- Experiment now approved at JLab [E12-14-001] to measure spin structure functions of ⁷Li (GFMC: $P_p = 0.86$ & $P_n = 0.04$)

Everyone with their favourite explanation for the EMC effect should make a prediction for the polarized EMC effect in ^{7}Li

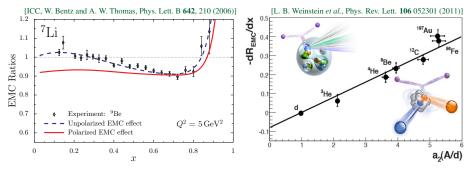
Turning off Medium Modification



- Without medium modification both EMC & polarized EMC effects disappear
- Polarized EMC effect is smaller than the EMC effect this is natural within standard nuclear theory and also from SRC perspective

Large splitting very difficult without *mean-field* medium modification

Mean-field vs SRC induced Medium Modification



Explanations of EMC effect using SRCs also invoke medium modification

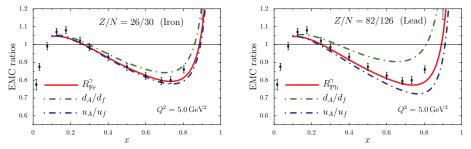
• since about 20% of nucleons are involved in SRCs, need medium modifications about 5 times larger than in mean-field models

For polarized EMC effect only 2–3% of nucleons are involved in SRCs

- it would therefore be natural for SRCs to produce a smaller polarized EMC effect
- Observation of a large polarized EMC effect would imply that SRCs are less likely to be the mechanism responsible for the EMC effect

Flavor dependence of EMC effect

[ICC, W. Bentz and A. W. Thomas, Phys. Rev. Lett. 102, 252301 (2009)]



Measured in e.g. parity-violating DIS, ν , charged current reactions, ...

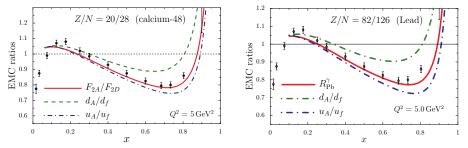
- Find that EMC effect is basically a result of binding at the quark level
 - for N > Z nuclei, d-quarks feel more repulsion than u-quarks: $V_d > V_u$
 - therefore u quarks are more bound than d quarks

Find isovector mean-field shifts momentum from u-quarks to d-quarks

$$q(x) = \frac{p^+}{p^+ - V^+} q_0 \left(\frac{p^+}{p^+ - V^+} x - \frac{V_q^+}{p^+ - V^+}\right)$$

Flavor dependence of EMC effect

[ICC, W. Bentz and A. W. Thomas, Phys. Rev. Lett. 102, 252301 (2009)]



Solution Measured in e.g. parity-violating DIS, ν , charged current reactions, ...

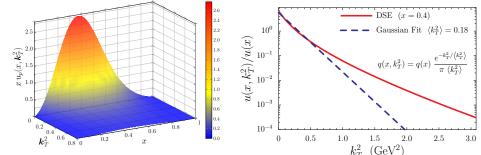
- Find that EMC effect is basically a result of binding at the quark level
 - for N > Z nuclei, d-quarks feel more repulsion than u-quarks: V_d > V_u
 therefore u quarks are more bound than d quarks

Find isovector mean-field shifts momentum from u-quarks to d-quarks

$$q(x) = \frac{p^+}{p^+ - V^+} q_0 \left(\frac{p^+}{p^+ - V^+} x - \frac{V_q^+}{p^+ - V^+}\right)$$

Momentum Imaging of Nuclei

Nucleon TMDs, Diquarks & Flavor Dependence



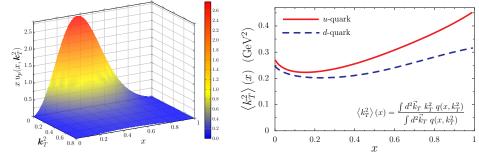
 $\frac{1}{2}P + k$

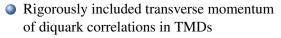
 $\frac{1}{k}P - k$

- Rigorously included transverse momentum of diquark correlations in TMDs
- This has numerous consequences:
 - scalar diquark correlations greatly increase $\left\langle m{k}_{T}^{2}
 ight
 angle$
 - find deviation from Gaussian anzatz and that TMDs do not factorize in $x \& k_T^2$
 - diquark correlations introduce a significant flavor dependence in $ig\langle m{k}_T^2ig
 angle(x)$

$$\langle \mathbf{k}_T^2 \rangle^{\mu_0^2} = 0.47^2 \,\mathrm{GeV}^2 \quad \langle \mathbf{k}_T^2 \rangle = 0.56^2 \,\mathrm{GeV}^2 \,\mathrm{[HERMES]}, \ 0.64^2 \,\mathrm{GeV}^2 \,\mathrm{[EMC]}$$

Nucleon TMDs, Diquarks & Flavor Dependence



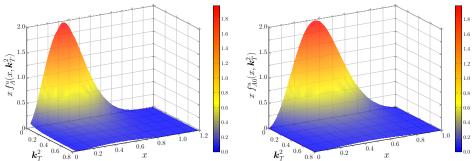


- This has numerous consequences:
 - scalar diquark correlations greatly increase $\langle {m k}_T^2
 angle$
 - find deviation from Gaussian anzatz and that TMDs do not factorize in $x \And k_T^2$

 $\frac{1}{P} = k$

• diquark correlations introduce a significant flavor dependence in $\left\langle m{k}_{T}^{2}
ight
angle (x)$

$$\langle \boldsymbol{k}_T^2 \rangle^{\mu_0^2} = 0.47^2 \,\mathrm{GeV}^2 \quad \langle \boldsymbol{k}_T^2 \rangle = 0.56^2 \,\mathrm{GeV}^2 \,\mathrm{[HERMES]}, \ 0.64^2 \,\mathrm{GeV}^2 \,\mathrm{[EMC]}$$

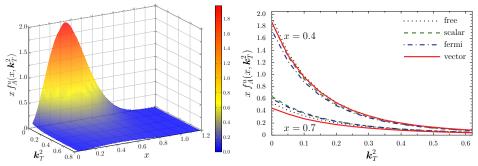


So far only considered the simplest spin-averaged TMDs $-q(x, k_T^2)$

• Integral of these TMDs over k_T gives the PDFs and reproduces the EMC effect

Solution Medium effects have only a minor impact on k_T^2 dependence of TMD

- scalar field causes $M^* < M$ but also $r_N^* > r_N$, net effect $\langle k_T^2 \rangle$ slightly decreases
- fermi motion has a minor impact analogous to x-dependence in EMC effect
- vector field only has zeroth component, no direct effect on k_T^2

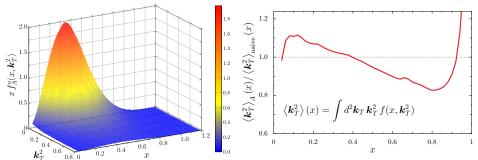


So far only considered the simplest spin-averaged TMDs $-q(x, k_T^2)$

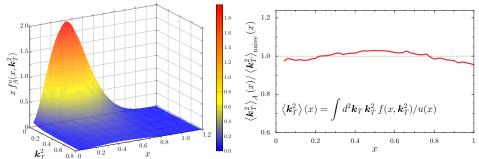
• Integral of these TMDs over k_T gives the PDFs and reproduces the EMC effect

Solution Medium effects have only a minor impact on k_T^2 dependence of TMD

- scalar field causes $M^* < M$ but also $r_N^* > r_N$, net effect $\langle k_T^2 \rangle$ slightly decreases
- fermi motion has a minor impact analogous to x-dependence in EMC effect
- vector field only has zeroth component, no direct effect on k_T^2



- So far only considered the simplest spin-averaged TMDs $-q(x, k_T^2)$
 - Integral of these TMDs over k_T gives the PDFs and reproduces the EMC effect
- Medium effects have only a minor impact on k_T^2 dependence of TMD
 - scalar field causes $M^* < M$ but also $r_N^* > r_N$, net effect $\langle k_T^2 \rangle$ slightly decreases
 - fermi motion has a minor impact analogous to x-dependence in EMC effect
 - vector field only has zeroth component, no direct effect on k_T^2



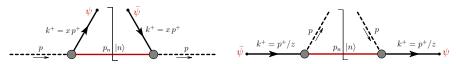
So far only considered the simplest spin-averaged TMDs $-q(x, k_T^2)$

• Integral of these TMDs over k_T gives the PDFs and reproduces the EMC effect

Solution Medium effects have only a minor impact on k_T^2 dependence of TMD

- scalar field causes $M^* < M$ but also $r_N^* > r_N$, net effect $\langle k_T^2 \rangle$ slightly decreases
- fermi motion has a minor impact analogous to x-dependence in EMC effect
- vector field only has zeroth component, no direct effect on k_T^2

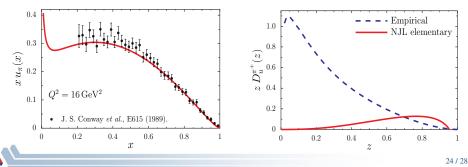
Pion PDF and Fragmentation Functions in NJL



• Truncate the spectator state $|n\rangle$ to a single dressed quark

- Ingredients: $S^{-1}(p) = p M + i\varepsilon;$ $\Gamma_{\pi} = \sqrt{Z_{\pi}} \gamma_5 \tau_{\pi}$
- Excellent result for the pion PDF however FF results are disastrous!

• momentum sum rule for fragmentation functions not satisfied: $\langle z \rangle \simeq 0.1$



Drell–Levy–Yan Relation

 A formal relation between PDFs at x > 1 and FFs can be obtained using crossing symmetry –
 Drell–Levy–Yan (DLY) relation:

$$D_q^h(z) = (-1)^{2(s_q+s_h)+1} \frac{z}{6} f_q^h \left(x = z^{-1}\right) \begin{bmatrix} 0.4\\ 0.2 \end{bmatrix}$$

In NJL the DLY relation is satisfied for the ⁰ ^{0.2} ^{0.4} ^{0.6} ^{0.8} ^{1.0} ^{1.2} ^{1.4} ^{1.6} ^{1.8} ^{2.0} elementary process: $\pi \to \bar{q}q \& q \to q\pi$; *poor agreement with data for FFs!*

1.8 1.6

1.41.2

0.6

 $(x)^{1.2}_{\mu} f^{0.8}_{0.8}$

- Is the DLY relation flawed? Or are certain approximations very good for PDFs but completely inadequate for FFs
- For example a high-energy quark can radiate a large number of pions and we must sum up the momenta of all pions!
- To maintain DLY and get good argeement for FFs may need to solve:

NJL-Jet Model

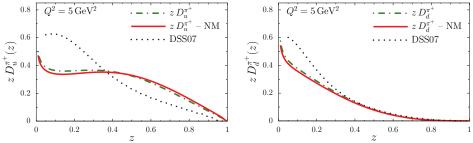
Replace elementary pion fragmentation with a cascade of emitted pions

- P(N, k) is the probability that k pions are emitted
- as $N \to \infty$, P(N,k) becomes a Gaussian distribution and the sum rules are satisfied exactly
- The fragmentation functions can then be represented by an integral equation:

$$D_q^{\pi}(z) = \hat{d}_q^h(z) + \sum_Q \left[\hat{F}_q^Q \otimes D_Q^{\pi} \right](z)$$

- $F_q^Q(z)$ is the number density for a meson emitted from the quark q leaving the momentum fraction z to the remaining quark Q
- Similar idea to Field and Feynman (1977) and can be applied to any framework where the elementary FFs can be calculated, e.g., DSEs

Fragmentation Function Results



Cascade-like processes enhance the fragmentation functions tremendously!

Momentum and isospin spin rules are satisfied exactly:

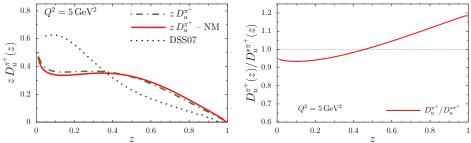
$$\sum\nolimits_h \int dz \; z \; D^h_q(z) = 1 \qquad \& \qquad \sum\nolimits_h \int dz \; t_h \; D^h_q(z) = t_q$$

Medium effects causes support of FFs to shift to larger z

- scalar field causes $M^* < M$ so easier for emitted pion to remove momentum
- medium effects similar in size to EMC effect at large z

Creating full model for cross-section to study e.g. p_T -broadening

Fragmentation Function Results



Cascade-like processes enhance the fragmentation functions tremendously!

Momentum and isospin spin rules are satisfied exactly:

$$\sum\nolimits_h \int dz \; z \; D^h_q(z) = 1 \qquad \& \qquad \sum\nolimits_h \int dz \; t_h \; D^h_q(z) = t_q$$

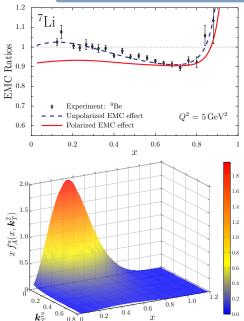
Medium effects causes support of FFs to shift to larger z

- scalar field causes $M^* < M$ so easier for emitted pion to remove momentum
- medium effects similar in size to EMC effect at large z

Creating full model for cross-section to study e.g. p_T -broadening

Conclusion

- Understanding the EMC effect is a critical step towards a QCD based description of nuclei
 - understanding spin and flavor dependence of EMC effect is an important near-term goal
- EIC would be transformational for understanding QCD and nuclei
 - quark and gluon GPDs and TMDs of: proton, deuteron, triton, ³He, ⁴He
 - quark & gluon PDFs of 7 Li, 11 B, . . .
 - must have flavor separation
- Unprecedented opportunity to address the question:



How does the nucleon-nucleon interaction arise from QCD?

Backup Slides

Nuclear spin sum

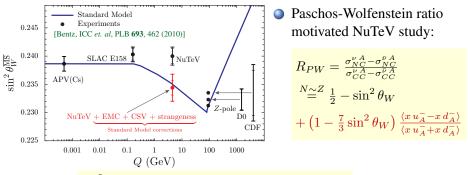
Proton spin states	Δu	Δd	Σ	g_A
p	0.97	-0.30	0.67	1.267
⁷ Li	0.91	-0.29	0.62	1.19
$^{11}\mathrm{B}$	0.88	-0.28	0.60	1.16
15 N	0.87	-0.28	0.59	1.15
27 Al	0.87	-0.28	0.59	1.15
Nuclear Matter	0.79	-0.26	0.53	1.05

Angular momentum of nucleon: $J = \frac{1}{2} = \frac{1}{2} \Delta \Sigma + L_q + J_g$

- in medium $M^* < M$ and therefore quarks are more relativistic
- lower components of quark wavefunctions are enhanced
- quark lower components usually have larger angular momentum
- $\Delta q(x)$ very sensitive to lower components

Therefore, in-medium quark spin \rightarrow orbital angular momentum

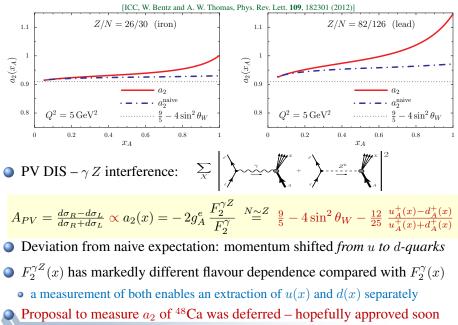
A Reassessment of the NuTeV anomaly



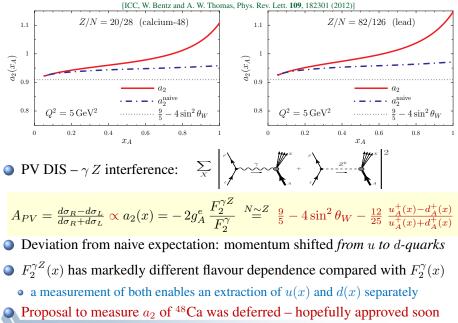
• NuTeV: $\sin^2 \theta_W = 0.2277 \pm 0.0013(\text{stat}) \pm 0.0009(\text{syst})$ [Zeller et al. PRL. 88, 091802 (2002)]

- Standard Model: $\sin^2 \theta_W = 0.2227 \pm 0.0004 \Leftrightarrow 3\sigma \implies \text{``NuTeV anomaly''}$
- Using NuTeV functionals: $\sin^2 \theta_W = 0.2221 \pm 0.0013(\text{stat}) \pm 0.0020(\text{syst})$
- Corrections from the EMC effect (~1.5 σ) and charge symmetry violation (~1.5 σ) brings NuTeV result into agreement with the Standard Model
 - consistent with mean-field expectation momentum shifted from u to d quarks

Parity-Violating DIS

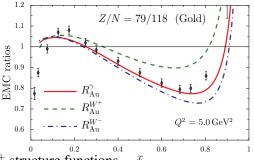


Parity-Violating DIS



Charged Current Processes

- The reaction $e^{\mp} A \longrightarrow \nu(\bar{\nu}) X$ has incredible promise for shedding new light on nucleon and nuclear PDFs
 - at EIC neutrino energy can be reconstructed from final state



Parton model expressions for W^{\pm} structure functions

$$F_1^{W^+} = \bar{u} + d + s + \bar{c} \qquad F_3^{W^+} = -\bar{u} + d + s - \bar{c}$$

$$F_1^{W^-} = u + \bar{d} + \bar{s} + c \qquad F_3^{W^-} = u - \bar{d} - \bar{s} + c$$

- Would provide much needed data on flavour structure of both valence and sea quark distribution functions
- Flavor dependence can also be test using e.g. SIDIS, π^+/π^- Drell-Yan, PVDIS, ν -DIS & W-production at RHIC

Quasi-Elastic Scattering

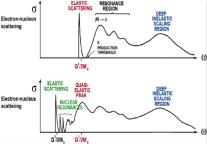
First hints for QCD effects in nuclei came from quasi-elastic electron scattering:

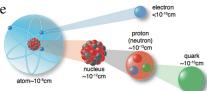
$$\frac{d^{2}\sigma}{d\Omega \ d\omega} = \sigma_{\text{Mott}} \left[\frac{q^{4}}{|\boldsymbol{q}|^{4}} \ R_{L}(\omega, |\boldsymbol{q}|) + f(|\boldsymbol{q}|, \theta) \ R_{T}(\omega, |\boldsymbol{q}|) \right]$$

- in measurements at MIT Bates in 1980 on Fe, which were later confirmed at Saclay in 1984
- These experiments, and *most* others following, observed a *quenching* of the Coulomb Sum Rule (CSR):

$$S_L(|\boldsymbol{q}|) = \int_{\omega^+}^{|\boldsymbol{q}|} d\omega \; \frac{R_L(\omega, |\boldsymbol{q}|)}{Z \, G_{Ep}^2(Q^2) + N \, G_{En}^2(Q^2)}$$

- despite widespread expectation that the CSR should approach unity for $|q| \gg k_F$
- Observation of quenching began one of the most controversial issues in nuclear physics – which remains to this day





Quasi-Elastic Scattering

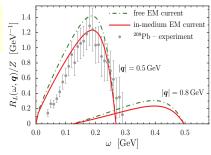
First hints for QCD effects in nuclei came from quasi-elastic electron scattering:

$$\frac{d^{2}\sigma}{d\Omega \ d\omega} = \sigma_{\text{Mott}} \left[\frac{q^{4}}{|\boldsymbol{q}|^{4}} \ R_{L}(\omega, |\boldsymbol{q}|) + f(|\boldsymbol{q}|, \theta) \ R_{T}(\omega, |\boldsymbol{q}|) \right]$$

- in measurements at MIT Bates in 1980
 on Fe, which were later confirmed at Saclay in 1984
- These experiments, and *most* others following, observed a *quenching* of the Coulomb Sum Rule (CSR):

$$S_L(|\mathbf{q}|) = \int_{\omega^+}^{|\mathbf{q}|} d\omega \; \frac{R_L(\omega, |\mathbf{q}|)}{Z \, G_{Ep}^2(Q^2) + N \, G_{En}^2(Q^2)}$$

- despite widespread expectation that the CSR should approach unity for $|q| \gg k_F$
- Observation of quenching began one of the most controversial issues in nuclear physics – which remains to this day



~10⁻¹²cm

<10⁻¹⁶cm

quark ~10⁻¹⁶cm

~10⁻¹³cm

Quasi-Elastic Scattering

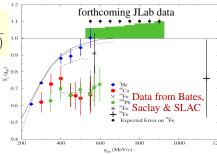
First hints for QCD effects in nuclei came from quasi-elastic electron scattering:

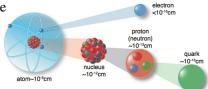
$$\frac{d^{2}\sigma}{d\Omega \ d\omega} = \sigma_{\text{Mott}} \left[\frac{q^{4}}{|\boldsymbol{q}|^{4}} \ R_{L}(\omega, |\boldsymbol{q}|) + f(|\boldsymbol{q}|, \theta) \ R_{T}(\omega, |\boldsymbol{q}|) \right]$$

- in measurements at MIT Bates in 1980 on Fe, which were later confirmed at Saclay in 1984
- These experiments, and *most* others following, observed a *quenching* of the Coulomb Sum Rule (CSR):

$$S_L(|\mathbf{q}|) = \int_{\omega^+}^{|\mathbf{q}|} d\omega \; \frac{R_L(\omega, |\mathbf{q}|)}{Z \, G_{Ep}^2(Q^2) + N \, G_{En}^2(Q^2)}$$

- despite widespread expectation that the CSR should approach unity for $|q| \gg k_F$
- Observation of quenching began one of the most controversial issues in nuclear physics – which remains to this day

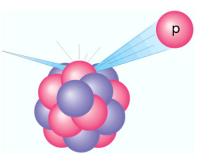


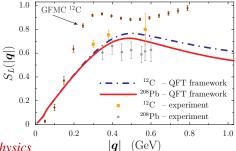


Coulomb Sum Rule

- QE scattering is sensitive to internal structural properties of bound nucleons
 - quenching of the CSR can be naturally explained by slight modification of bound nucleon EM form factors
 - natural consequence of QCD models
- Two state-of-the-art theory results exist, both from Argonne:
 - the GFMC result, with no explicit QCD effects, finds no quenching
 - QCD motivated framework finds a dramatic quenching; 50% relativistic effects & 50% medium modification
- Jefferson Lab has revisited QE scattering & this impasse stands to be resolved shortly

• confirmation of either result will be an important milestone in QCD nuclear physics





Coulomb Sum Rule

- QE scattering is sensitive to internal structural properties of bound nucleons
 - quenching of the CSR can be naturally explained by slight modification of bound nucleon EM form factors
 - natural consequence of QCD models
- Two state-of-the-art theory results exist, both from Argonne:
 - the GFMC result, with no explicit QCD effects, finds no quenching
 - QCD motivated framework finds a dramatic quenching; 50% relativistic effects & 50% medium modification
- Jefferson Lab has revisited QE scattering & this impasse stands to be resolved shortly
 - confirmation of either result will be an important milestone in QCD nuclear physics

