Tag! You're It! Bound Nucleon Structure at JLab

Lawrence Weinstein Old Dominion University

Brief Tour of Nuclear Structure

Nucleons:

- ~65% in single particle orbitals
- ~20% in NN correlations
 - Almost all high momentum nucleons

L. Lapikas, NP **A553** (1993) 297c B. Schmookler, submitted N. Fomin, PRL **108**, 092502 (2012) K. Egiyan, PRL **96**, 082501 (2006)

Size of effect ("depth" or slope) grows with A

L.B. Weinstein, ODU

EMC Effect: Theory

- Nuclear Effects:
 - Fermi motion
 - Binding energy
- **Full Calculation**
 - Nucleon modification
 - Nuclear pions ٠
 - shadowing ٠

Nucleon modification:

Phenomenological change to bound nucleon structure functions, change proportional to virtuality $v = (p^2 - M^2)/M^2$

EMC Effect and Correlations

SRC data from Fomin et al EMC data from Gomez et al and Seely et al

Weinstein et al, PRL**106**, 052301 (2011) Hen et al, PRC**85**, 047301 (2012) Hen et al, RMP **89**, 045002 (2017)

L.B. Weinstein, ODU

EMC Effect and Correlations

SRC data from Fomin et al EMC data from Gomez et al and Seely et al

Weinstein et al, PRL**106**, 052301 (2011) Hen et al, PRC**85**, 047301 (2012)

EMC-SRC Connection

If we are right, we should measure a large EMC effect by selecting highmomentum nucleons!?

Deuteron

- Is there an "EMC" effect in the deuteron?
- Is it bigger at high-momentum?
- Does the structure function F₂ depend on nucleon momentum (virtuality)?

$$\frac{\sigma_p^*}{\sigma_p} \approx \frac{\sigma_n^*}{\sigma_n} \approx \frac{2.4\%}{5\%} \approx 0.5$$

SRC@EIC 2018

EMC Effect Explanations

1) all nucleons are slightly modified by the nuclear mean field (see lan's talk)

➢ or

- 2) nucleons in SRC pairs are strongly modified by their partners
 - High momentum (large virtuality) nucleons are much more modified
- EMC/SRC correlation points to #2

Hmm... How do we test this?

 \succ Let's measure the in-medium modified(?) structure function F_2 in DIS

$$\frac{d^{3}\sigma}{d\Omega dE'} = \left(\frac{d\sigma}{d\Omega}\right)_{Mott} \left[\frac{1}{\omega}F_{2}(x_{B},Q^{2}) + \frac{2}{M}F_{1}(x_{B},Q^{2}) \cdot \tan^{2}\left(\frac{\theta_{e}}{2}\right)\right]$$

(F_1 and F_2 are related by R, the measured ratio of longitudinal and transverse cross sections. Thus measuring the cross section yields F_2 .)

L.B. Weinstein, ODU

F₂ Momentum Dependence

What modification do we need?

- Assume $F_2^A = ZF_2^p + NF_2^n + n_{SRC}^A(\Delta F_2^p + \Delta F_2^n)$
- Take the ratio to deuterium

$$\frac{F_2^A}{F_2^d} = \left(\frac{n_{SRC}^A}{n_{SRC}^d} - N\right) n_{SRC}^d \frac{\Delta F_2^p + \Delta F_2^n}{F_2^d} + (Z - N) \frac{F_2^p}{F_2^d} + N$$

Previously Measured Universal?

• Use measured n_{SRC}^{A} from QE A(e,e')

- Fit $n_{SRC}^d \frac{\Delta F_2^p + \Delta F_2^n}{F_2^d}$ for each nucleus
- Do we get a universal modification function?

Previously Measured

What modification do we need?

EMC Ratios No isospin corrections

Universal function within normalization uncertainty

B. Schmookler, submitted

Tagging Nucleon Structure Functions

- 6 GeV: *d*(*e*,*e*'*p*_s) Hall B (Kuhn, Griffeon)
- $d(e,e'n_s)$ Hall B, BAND detector, E12-11-003A
- *d*(*e*,*e*'*p*_s) Hall C, LAD detector, E12-11-107

Experimental method

- DIS on a deuteron target
- Tag high-momentum nucleons with high-momentum backward-recoiling ("spectator") partner nucleon d(e,e'N_S)
- Recalculate struck nucleon kinematics (x', W')

Minimize nucleon rescattering (FSI)

A. V. Klimenko et al., PRC 73, 035212 (2006)

FSI:

- \succ Decrease with Q^2
- ➤ Increase with W'
- > Not sensitive to x'
- ➢ Data = PWIA for $\theta_{pq} > 107^\circ$ ➢ FSI small for $\theta_{pq} > 107^\circ$

Minimize nucleon rescattering (FSI) W'=2

A. V. Klimenko et al., PRC 73, 035212 (2006)

Experimental Method

 $d(e,e'N_S)$ cross section Factorizes into the cross section $(\sigma \sim F_2)$ times the distorted momentum distribution.

Cross section ratio at fixed nucleon momentum \rightarrow distorted spectral function cancels:

$$F_{2}^{*}(x_{1}',\alpha_{S},p_{T},Q_{1}^{2})/F_{2}^{*}(x_{2}',\alpha_{S},p_{T},Q_{1}^{2}) = \left(\frac{d^{4}\sigma}{dx_{1}'dQ^{2}d\vec{p}_{S}}/K_{1}\right) / \left(\frac{d^{4}\sigma}{dx_{2}'dQ^{2}d\vec{p}_{S}}/K_{2}\right)$$

Measure α_s dependence at $\theta_{pq} > 107^\circ$ (small FSI)

$$x' = \frac{Q^2}{2p_{\mu}q^{\mu}} = \frac{Q^2}{2[(M_d - E_s)\omega + \vec{p}_s \cdot \vec{q}]}$$

x' is *x*-Bjorken for the moving struck nucleon

$$\vec{p}_s$$
 maps to (α_s, p_T)

 $\alpha_{s} = (E_{s} - p_{s}^{z}) / m_{s}$

Experimental Method (cont.)

Minimize experimental and theoretical uncertainties by measuring cross-section ratios

$$\frac{\sigma_{DIS}(x_{high}^{'}, Q_{1}^{2}, \vec{p}_{s})}{\sigma_{DIS}(x_{low}^{'}, Q_{2}^{2}, \vec{p}_{s})} \cdot \frac{\sigma_{DIS}^{free}(x_{low}^{'}, Q_{2}^{2})}{\sigma_{DIS}^{free}(x_{high}^{'}, Q_{1}^{2})} \cdot R_{FSI} = \frac{F_{2}^{bound}(x_{high}^{'}, Q_{1}^{2}, \vec{p}_{s})}{F_{2}^{free}(x_{high}^{'}, Q_{1}^{2})}$$

x' = x from a moving nucleon $x'_{high} \ge 0.45$

 $0.25 \ge x'_{low} \ge 0.35$ No EMC effect is expected

$$x'_{B} = \frac{Q^{2} (For d)}{2p_{\mu}q^{\mu}} \stackrel{Q^{2}}{=} \frac{Q^{2}}{2[(M_{d} - E_{S})\omega + \vec{p}_{S} \cdot \vec{q}]}$$

correction

factor

 $X_{B}' VS. X_{B}$

CLAS6 Results: d(e,e'p_s)

12 GeV – CLAS12 + BAND

E12-11-003A : Hen, Weinstein, Piasetzky and Hakobyan

CLAS12 detects electrons Back Angle Neutron Detector (BAND):

- 116 double ended scintillator bars plus a veto layer.
- $160^o \le \theta_n \le 170^o$
- Efficiency $\sim 40\%$

Commissioning BAND now Deuteron data run starting winter 2019

ODU, MIT, UTFSM, Tel Aviv, FSU, GWU

Expected Results

BAND reach

12 GeV – Hall C + LAD

HMS and SHMS detect electrons

Large Angle Detector (LAD) (132 reused CLAS6 TOF detectors, 1.5 sr) detects recoiling proton

Low x'	High x'
$E_{\rm in} = 10.9 { m ~GeV}$	$E_{\rm in} = 10.9 { m GeV}$
E' = 4.4 GeV	E' = 4.4 GeV
$\theta_e = 13.5^{\circ}$	$\theta_e = -17^0$
$Q^2 = 2.65 \text{ GeV}^2$	$Q^2 = 4.19 \text{ GeV}^2$
$ \vec{q} = 6.7 \text{ GeV}/c$	$ \vec{q} = 6.8 \text{ GeV}/c$
$\theta_q = -8.8^{\circ}$	$\theta_{q} = 10.8^{\circ}$
x = 0.217	x = 0.34

Collect both LAD-HMS and LAD-SHMS coincidences

 x_{B}' vs. x_{B} (Why x'?)

Experimental Set Up – Hall C

CLAS6 TOF -> LAD

Tel Aviv, Kent State, MIT, JLab, ODU

Kinematic Coverage

JLab12: Expected Results

Collider Tagging Kinematics 100 GeV $d(\gamma = 50)$

Spectator Momentum (GeV/c)

lass	P_z (CM)	<i>P</i> , (CM)	P_z (Lab)	θ_p (Lab)	
₹ S	0	0	50	0	
ero	0.2	0	41	0	ab
ente	0.4	0	34	0	
Ŭ	0.6	0	28	0	
	0.6	0.2	29	0.007	
	0.6	0.6	36	0.02	

Small changes in spectator P_CM \rightarrow big changes in P_lab Need to detect and measure very small angles Need similar luminosity to CLAS12 (10³⁵ cm⁻² s⁻¹)

Tagged Quasielastic Ratios

- $\sigma_A(e, e')/\sigma_d(e, e')$ has a plateau starting at x = 1.5where $p_i > 275$ MeV/c
- If we tag large *p_i* events, will we see a plateau at smaller *x*?
- Expected cross section ratio: *en* and *ep* cross sections

$$\frac{2}{A} \cdot \frac{\sigma_A}{\sigma_d} (e, e'p_{recoil}) = \frac{2}{A} \cdot \frac{\#np_A \cdot \sigma_n + 2\#pp_A \cdot \sigma_p}{\#np_d \cdot \sigma_n} \cdot \frac{Trans_p}{Proton}$$
Number of pairs
$$Proton$$
transparency

Tagged Quasielastic Ratios

- $\sigma_A(e, e')/\sigma_d(e, e')$ has a plateau starting at x = 1.5where $p_i > 275$ MeV/c
- If we tag large *p_i* events, will we see a plateau at smaller *x*?
- Expected cross section ratio: *en* and *ep* cross sections

$$\frac{2}{A} \cdot \frac{\sigma_A}{\sigma_d} (e, e'p_{recoil}) = \frac{2}{A} \cdot \frac{\#np_A \cdot \sigma_n + 2\#pp_A \cdot \sigma_p}{\#np_d \cdot \sigma_n} \cdot Trans_p$$
Number of pairs
$$\frac{2 \#np_A}{\pi} = 2 \#np_A$$

$$a_2 = \frac{1}{A} \frac{1}{\# n p_d}$$

Tagged Quasielastic Ratios

en and ep cross sections

Selecting (e,e'p_{recoil}) events

- $Q^2 > 1.75 \text{ GeV}^2$
- 0.8 < x < 2
- Spectator (?) proton
 - Slow protons far from rescattering peak at 70°

$$-0.3 < p_{\rm p} < 1.6 \; {\rm GeV/c}$$

 $-\frac{p_p}{q} < 0.4$
 $-\theta_{pq} < 50^o$

L.B. Weinstein, ODU

Ratios vs proton momentum

Cross section ratios vs x

Summary

- We can tag both QE and DIS reactions to select high-momentum nucleons
 - Selectivity?
- Bound nucleon structure is almost certainly modified, even in the deuteron
 - Modification should increase with momentum
- Test this with $d(e,e'N_s)$ spectator tagging
 - Ratio of cross sections
 - Upcoming measurements at JLab
 - Exciting possibilities at the EIC

backup

SRC@EIC 2018

LAD Performance

Momentum resolution (300 \approx 0.7\%

LAD Threshold Minimum ionizing

α _s	1.2	1.3	1.4	1.5
<i>x</i> ′ _B > 0.45	1:1	1:2	1:2	1:2
<i>x</i> ′ _B ≈ 0.3	3:1	1:1	1:1	1:1