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Why the deuteron?

The deuteron is a spin-1 system: has more structure than
the proton or neutron.

The deuteron has an electric quadrupole moment—and a
huge one, 0.286 fm2.

The deuteron also has a tensor polarization, which is
sensitive to exotic components like hidden color.

JLab experiment E12-13-011 will measure tensor-polarized
DIS of the deuteron.
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(top) longitudinally polarized
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Deuteron polarization may be relevant to EIC design!
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What are GPDs?
Generalized parton distributions (GPDs) are defined using the same operators (light cone
correlators) as PDFs.

A familiar example: vector quark correlator for the nucleon.

1

2

∫
dz

2π
e−iP ·nzx〈p′|q̄

(nz
2

)
/nq
(
−nz

2

)
|p〉 = ū(p′)

[
/nHN (x, ξ, t) +

iσn∆

2mN
EN (x, ξ, t)

]
u(p)

...in the light cone gauge. Other gauges require a Wilson line.

GPDs are defined using different momenta in the initial and final states.

The limit p′ → p gives us traditional PDFs.

x + ξ x − ξ

1 + ξ 1 − ξ

x is the average light cone momentum
fraction between initial and final states.

2ξ is the light cone momentum fraction lost
by the target.

t is the invariant momentum transfer.
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Going up in spin

The deuteron (as a spin-1 system) has more GPDs than the proton.

A spin-0 system (π, 4He) has one vector GPD.

A spin-1
2 system (p, n, 3H, 3He) has two vector GPDs.

A spin-1 system (deuteron, ρ) has five vector GPDs.

This increase in the number of GPDs is analogous to the increasing number of form
factors, or of DIS structure functions, as spin increases.

〈/n〉 = −(ε · ε′∗)H1+
(n · ε′∗)(∆ · ε)− (n · ε)(∆ · ε′∗)

2P · n H2+
(ε ·∆)(ε′∗ ·∆)

2M2
D

H3

−(n · ε)(∆ · ε′∗) + (n · ε′∗)(∆ · ε)
2P · n H4+

[
(n · ε)(n · ε′∗)M2

D

(P · n)2
+

1

3
(ε · ε′∗)

]
H5

This big equation tells us how the five vector GPDs are defined.
Helpful mnemonic: H1-H3 are defined by same Lorentz structures as EM form factors F1-F3.
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Polynomiality rules for the nucleon
Nucleon GPDs are known to obey polynomiality sum rules [X. Ji, J.Phys. G24 (1998)
1181]: ∫ 1

−1
xsHN (x, ξ, t)dx =

s∑
l=0
2|l

As+1,l(t)(2ξ)
l+mod(s, 2)CN (t)(2ξ)s+1

∫ 1

−1
xsEN (x, ξ, t)dx =

s∑
l=0
2|l

Bs+1,l(t)(2ξ)
l−mod(s, 2)CN (t)(2ξ)s+1

A, B, and C are called generalized form factors.

These rules are a result of Lorentz covariance.

They are violated for models that break covariance (e.g., models with Fock
space truncations or which use non-relativistic nuclear wave functions).

Spin-1 systems will have polynomiality rules too (due to Lorentz symmetry).
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Polynomiality sum rules for the deuteron
I have derived the following sum rules for spin-1 systems (with x ∈ [−1, 1] convention):∫ 1

−1
xsH1(x, ξ, t)dx =

s∑
l=0
2|l

As+1,l(t)(2ξ)
l+mod(s, 2)Fs+1(t)(2ξ)s+1

∫ 1

−1
xsH2(x, ξ, t)dx =

s∑
l=0
2|l

Bs+1,l(t)(2ξ)
l

∫ 1

−1
xsH3(x, ξ, t)dx =

s∑
l=0
2|l

Cs+1,l(t)(2ξ)
l+mod(s, 2)Gs+1(t)(2ξ)s+1

∫ 1

−1
xsH4(x, ξ, t)dx =

s∑
l=1
2-l

Ds+1,l(t)(2ξ)
l

∫ 1

−1
xsH5(x, ξ, t)dx =

s−1∑
l=0
2|l

Es+1,l+1(t)(2ξ)l

Only H1 and H3 (related to electric distribution, not magnetic) have the (2ξ)s+1 term. Two D-terms???
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Special cases of generalized form factors
The first Mellin moments (s = 0) give electromagnetic form factors:∫ 1

−1

H1(x, ξ, t)dx = F1(t)

∫ 1

−1

H2(x, ξ, t)dx = F2(t)∫ 1

−1

H3(x, ξ, t)dx = F3(t)

∫ 1

−1

H4(x, ξ, t)dx =

∫ 1

−1

H5(x, ξ, t)dx = 0

The second Mellin moments (s = 1) give gravitational form factors:∫ 1

−1

xH1(x, ξ, t)dx = G1(t)+(2ξ)2G3(t)

∫ 1

−1

xH2(x, ξ, t)dx = G5(t)∫ 1

−1

xH3(x, ξ, t)dx = G2(t)+(2ξ)2G4(t)∫ 1

−1

xH4(x, ξ, t)dx = (2ξ)G6(t)

∫ 1

−1

xH5(x, ξ, t)dx = G7(t)

A. Freese (ANL) Deuteron GPDs September 6, 2018 7 / 25



Information contained in GFFs
The GFFs contain extra information that electromagnetic FFs don’t.

Can construct a Newtonian form factor (monopole gravitational) and define a
gravitational radius:

GN (t) =

(
1 +

2

3
τ

)
G1(t)− 2

3
τG5(t) +

2

3
τ(1 + τ)G2(t)

where τ = −t/(4M2
D).

〈r2
G〉 = 6

d

dt
[GN (t)]

Taneja et al. (Phys.Rev. D86 (2012) 036008) tell us that

J(t) =
1

2
G5(t)

To unambiguously extract this information requires GPD calculations to obey polynomiality.
Lorentz covariance in GPD calculations is a necessity.
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Importance of covariance
Let’s say we want to compute the deuteron D-term(s).

One can compute H1(x, ξ, t) and H3(x, ξ, t) in a covariant framework.

Take the second Mellin moments of these at multiple ξ values and fit to A(t) +B(t)ξ2

per t value.

B(t) is proportional to the desired form factor.

Example: look at first and second moments of H1, at t = −0.5 GeV2:
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This doesn’t work for light cone approaches with a truncated Fock space.
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Motivation for a contact model

For computing the GPDs themselves, covariance is of the utmost importance.

Can be difficult to maintain covariance while solving a bound state equation for
fermions.

Impressive headway is being made for realistic BSE kernels by W. de Paula, et al.
[PRD94 (2016), 071901], and Carbonell and Karmanov [EPJA46 (2010), 387].
However we want a simpler approach that can be immediately generalized to 3+ body
systems.

Covariantly solving a four-Fermi contact interaction is tractable.

Success of the Nambu-Jona-Lasinio (NJL) model suggests this approach has promise.

Thus we consider a contact model of nucleon-nucleon interactions.
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Lagrangian

Construct most general possible NN Lagrangian that:

Has four-fermi contact interactions.
Has no derivatives in interaction terms.
Obeys SU(2)V × SU(2)A isospin symmetry.

LNN = ψ̄(i/∂ −m)ψ

−GS
[(
ψ̄τjCτ2ψ̄

T
) (
ψTC−1τ2τjψ

)
−
(
ψ̄τjγ

5Cτ2ψ̄
T
) (
ψTC−1τ2γ

5τjψ
)]

−GV
[(
ψ̄τjγ

5γµCτ2ψ̄
T
) (
ψTC−1τ2γ

5γµτjψ
)

+
(
ψ̄γµCτ2ψ̄

T
) (
ψTC−1τ2γµψ

)]
−1

2
GT
[(
ψ̄iσµνCτ2ψ̄

T
) (
ψTC−1τ2iσµνψ

)]
Neglect charge-symmetry violation (assume mp = mn ≡ mN ).

Interactions decouple into separate isoscalar and isovector sectors.

Vector and tensor interactions both contribute to the deuteron.
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Bethe-Salpeter vertex

We can solve the Bethe-Salpeter equation

k

p

k

p

k̄

=

in the contact model:

ΓD(p, λ) =

[
αV /ε(p, λ) + iαT

σεp

MD

]
Cτ2

We consider two variants: a pure vector solution, and a full solution that includes
tensor interactions.

GPDs, form factors, etc. are then computed in an impulse approximation.
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Solution and static observables
Couplings GV , GT and UV regulator Λ determined by fit to static observables:

Deuteron binding energy
Deuteron electromagnetic moments
3S1-3D1 scattering parameters.

Pure vector Full model Empirical

εD (MeV) 2.19 2.18 2.22
rE (fm) 2.10 2.09 2.14
µD 0.882 0.879 0.857

QD (fm2) -0.0074 0.285 0.286
3a1 (fm) 5.34 5.26 5.42
3r1 (fm) 1.77 1.78 1.76

Λ (MeV) 135 139 —
GV (GeV−2) 42.8 -683 —
GT (GeV−2) 0 -715 —

Full model can describe the quadrupole moment.
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DIS structure functions
How well can this model describe DIS structure functions?
(Use CJ15 for nucleon PDFs; impulse approximation.)
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Not bad for F2(x,Q2) (underestimate at high x due to lack of target mass corrections).

Doesn’t describe HERMES data for b1(x,Q2), but that’s expected.
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Electromagnetic form factors
What about electromagnetic form factors?
(Use Kelly-Riordan nucleon form factors.)
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Pure vector can describe unpolarized structure, but not tensor-polarized.

Full model works only at small −t, but contains tensor polarization.

Reminiscent of NJL model—subleading structures become too large at large −t.
Contact model limited to small −t. Limited applicability of GPDs obtained here.

We are working on adding pion exchange to the pure vector model—could add tensor
polarization without overestimating A(t) and B(t).
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Convolution formalism

To use contact model B-S vertex, need convolution formula (impulse approximation)
for nuclear GPDs.
This is ostensibly straightforward:

Get a model for the nucleon GPDs HN and EN .

Compute the matrix element

〈p′, λ′|
[
/nHN +

iσn∆

2mN
EN

]
|p, λ〉

assuming pointlike nucleons.
(The factors HN and EN fold in the non-pointlike structure.)

An ambiguity arises: identities like Gordon decomposition that are true for on-shell
nucleons will lead to different results for off-shell nucleons.

This turns out to matter for the nucleon D-terms.
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The D-term and Gordon decomposition
In models such as [Goeke et al., Prog. Part. Nucl. Phys. 47 (2001)], the nucleon GPD is broken into a
double distribution and a D-term:

HN (x, ξ, t) = HDD(x, ξ, t)+D

(
x

ξ
, t

)
EN (x, ξ, t) = EDD(x, ξ, t)−D

(
x

ξ
, t

)

The D-term here contributes to the (2ξ)s+1 GFF in the polynomiality sum rules.

The same D-term enters both HN and EN with opposite sign.

This is due to Lorentz invariance. [X. Ji, J.Phys. G24 (1998) 1181]

Using Gordon decomposition, we can write:

ū(p′, σ′)

[
/nHN +

iσn∆

2mN
EN

]
u(p, σ) = ū(p′, σ′)

[
/nHDD +

iσn∆

2mN
EDD +

p · n
mN

DN

]
u(p, σ)

for on-shell spinors.
We must decide between the LHS and RHS for the “unmodified” deuteron GPD.

The RHS gives polynomiality.

Meson GPD calculations in the NJL model tell us that the RHS is correct for off-shell quarks.

Off-shell nucleon derivation in progress.
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The master convolution formula
Evaluating the matrix element

〈p′, λ′|
[
/nHDD +

iσn∆

2mN
EDD +

p · n
mN

DN

]
|p, λ〉

gives a master convolution formula:

Hi(x, ξ, t) =

∫
dy

y

[
hi(y, ξ, t)HDD

(
x

y
,
ξ

y
, t

)
+ ei(y, ξ, t)EDD

(
x

y
,
ξ

y
, t

)
+ ydi

(
y

ξ
, t

)
DN

(
x

ξ
, t

)]
hi, ei, and di describe how the nucleons are distributed in the nucleus, using GPD language.
Call them generalized nucleon distributions (GNDs).

By construction, HDD, EDD, and DN already obey polynomiality.

We can prove that when the GNDs obey polynomiality sum rules, so do the deuteron GPDs.

Taking Mellin moments of the master convolution formula will give discrete convolution
relations for the GFFs. Numerically faster than computing GPDs directly.

Also, Gegenbauer moments (linear combinations of Mellin moments) evolve
multiplicatively—easier evolution. We plan to study their convergence for contact model.
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Generalized nucleon distributions (full contact model)
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h1 is the “typical” GND.

Reduces to light cone density in forward limit.

Gives F1V “body” form factor (for pointlike nucleons) when
integrated over x.

GNDs are nucleon densities in the deuteron using GPD language.
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GPD results (full contact model)

t=0−−→
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H1 is the “typical” GPD. (Dominated by monopole.)

Reduces to unpolarized PDF in the forward limit.

Gives F1 form factor (for real nucleons) when integrated
over x.
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Skewed up quark GPDs (in full contact model)
At t = 0 (please forgive numerical jitters! They’re part of why I’m looking at Gegenbauer moments...)
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At t = −0.5 GeV2 (lack of jitters)
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Gravitational form factors

Because of polynomiality, we can get unambiguous gravitational form factor
extractions.
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Can estimate mass radii.

〈rMQ〉 ≈ 〈rMG〉 ≈ 1.96 fm

Compare to 〈rE〉 ≈ 2.09 fm in this
model.
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Impact parameter PDFs

Another neat application of GPDs: impact parameter PDFs.

Zero skewness (ξ = 0) means light cone Fock space expansion poses no problems.

Final and initial states related by kinematic transforms (assuming light cone
quantization).

Can do a two-dimensional Fourier transform on transferred momentum:

ρq(x,b⊥) =

∫
d2k⊥Vq(x, ξ = 0, t = −k2

⊥)e−ib⊥·k⊥

(where V is the full light cone correlation operator).

The result is a positive-definite density of partons over x and transverse spatial
position.

It’s a relativistic spatial density! (Thanks to light cone physics.)

See G. Miller, Ann.Rev.Nucl.Part.Sci. 60 (2010) 1-25
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Impact parameter PDFs—contact model
Light cone helicity zero: donut-shaped quark density

Transversely-polarized deuteron: peanut-shaped density
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Conclusions and outlook

In conclusion:

We have calculated deuteron GPDs in a manifestly covariant contact model.

Our GPDs obey polynomiality sum rules, and allow an unambiguous extraction of
generalized form factors.

Future work to be done:

We will use these GPDs to make predictions for cross sections and asymmetries in
DVCS, for both JLab and the EIC.

The model will be extended to other light nuclei (triton and helium).

The NJL model can be used to compute covariant nucleon GPDs. (We’ve already
computed meson GPDs!)

We’re working on how to add long-range pion exchange to the model for more
accurate behavior at high −t.

Thanks for your time and attention!
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