SRCs @ EIC: Challenges in Forward Detection and Simulation

Mark D. Baker* Sept 6, 2018

Challenges in ePb: an example (w/ V. Morozov, et. al & E. Aschenauer et al.) Challenges in eD (w/ Z. Tu, T. Ullrich) SRCs: e"D" embedded in ePb? (w/ D. Higinbotham et al.)

*- mdbaker@bnl.gov, mdbaker@jlab.org, mdbaker@mdbpads.com

Collaborators and Advisors & plot providers

- eA @ eRHIC: E. Aschenauer, W.Chang, <u>A. Kiselev</u>, J.H. Lee, T. Ullrich, L. Zheng
- eA @ JLEIC: A. Accardi, R. Dupre, M. Erhart, C. Fogler, C. Hyde, <u>V. Morozov</u>, P. Nadel-Turonski, K. Park, <u>A. Sy</u>, T. Toll, G. Wei, <u>L. Zheng</u>
- eD @ eRHIC: <u>Z Tu</u>, T. Ullrich
- SRC @ JLEIC: F. Hauenstein, O.Hen, D. Higinbotham, <u>C. Hyde</u>, P. Nadel-Turonski, G. Wei, L. Zheng
- Advice from: N. Fomin, W. Schmidke, M. Sievert, R. Venugopalan, C. Weiss, M.P. Zurita

BeAGLE – Benchmark eA Generator for LEptoproduction

- Aschenauer, MDB, Lee, Zheng (+Armesto+Dupré)
- Merger of
 - Pythia hard interaction (adding RAPGAP option)
 - Glauber + optional multinucleon shadowing
 - Optional (radiative) jet quenching PyQM (off today)
 - DPMJET3-F (DPMJET3+Fluka) nuclear response
- Tuned to ZEUS forward nucleons, FNAL E665 slow neutrons, + HERMES
 - Working on E665 e-by-e charged hadrons (SC)

Key Features of BeAGLE

Multistep process.

Hard interaction (DIS or diffractive) involving one or more nucleons.

Intra Nuclear Cascade w/ Formation Zone

Excited nuclear remnant will decay: Fission &/or evaporation of nucleons De-excitation by gamma emission.

Try to model both hard process AND nuclear interaction.

It helps if A is big enough (12?) to leave a substantial remnant which can be modeled in the ion rest frame as a collection of onmass-shell nucleons with Fermi motion sitting in a mean field.

Importance of veto tagging

 $1 < Q^2 < 10 \text{ GeV}^2$ & x<0.01 Yield is ~ 50% of that at 20x100 (18x110)

For experts: old Sartre (eAu) tune Similar to White paper, but JLEIC energy. Low statistics MC run. We definitely need to tag (VETO) the incoherent data or we have no information.

Challenge of veto tagging

No tagging

Remove events with:

- n or >40 MeV γ w/ θ <10mr
- or hadronic activity w/ θ>100mr
- or >500 MeV γ w/ θ >100mr

Challenge of veto tagging

Remove events with:

- n or >40 MeV γ w/ θ <10mr
- or hadronic activity w/ θ >100mr
- or >500 MeV γ w/ θ >100mr

Also remove events with:

• p w/ θ<10mr

Good enough??

Simulation Challenge: nuclear detail

• Veto problems for $|t| < 0.07 \text{ GeV}^2$ are due to events where the struck nucleon and any further INC nucleons are reabsorbed: $e + {}^{208}\text{Pb}_{82} \rightarrow e' + {}^{208}\text{Pb}_{82} + J/\psi + \gamma + \gamma + \gamma ...$

- Excited Pb decays usually include a γ w/ E≥2.6 MeV
- Au decays are more challenging to detect!

2-3 photons / per event. Half are in the forward TRF hemisphere: $\theta < 1/\gamma_{Pb}$ in lab or 23 mr for 10x40 (8.5 mr for 18x110). By momentum conservation: WE EXPECT AT LEAST ONE SUCH PHOTON PER EVENT!

BeAGLE for eA summary

- Forward neutrons <u>and</u> protons <u>and</u> photons are ALL needed in order to veto incoherent diffraction and measure coherent diffraction.
- Still to determine:
 - Is our current forward detector suite adequate?
 - Can we subtract the remaining background?
 - If we invert what we can measure, how well do we reconstruct the input G(b)?
 - Is BeAGLE correct?
 - Add RAPGAP & tune to E665 SC data.

BeAGLE not optimized for e+D!

Main problem – Everything lives on mass shell. No remnant to absorb energy-momentum imbalance.

 $W^{\mu} = \{v + M_{d}; 0, 0, sqrt(v^{2} + Q^{2})\} \qquad W^{\mu} = \{v + E_{n} + E_{p}; 0, 0, sqrt(v^{2} + Q^{2})\}$

Note: DPMJET3-F has the same problem. Minimized due to minimal p_F . So DPMJET3-F is not ideal for detector optimization for SRC.

eRD17-BeAGLE

Solutions

- First attempt (for today) using upgraded BeAGLE
 - Impulse approximation (struck + spectator)
 - All relative p,n momentum from the initial state
 - Ad hoc adjustment of final state particle 4-momenta to match correct total 4-momentum of original γ^* +D
- Next steps: input from Christian Weiss
 - Conserve p⁺, p_T adjust only p⁻ of non-spectators
 - Get spectator p^+ , p^- , p_{τ} from light-cone wavefunction?
- Then?: FS effects? Non-impulse approximation...

Fermi momentum at a collider

BeAGLE (& DPMJET & Pythia) use on-mass-shell nucleons which sit in a mean-field nuclear binding + Coulomb potential.

In nuclear target rest frame:

$$P^{\mu} = \{M; 0, 0, 0\} \text{ OR } \{M + E_{kinF}; k_{xF}, k_{yF}, k_{zF}\}$$

In lab collider frame: $P^{\mu} = \{\gamma M; 0, 0, \gamma \beta M\}$ OR $\{\gamma M + \gamma \beta k_{zF} + \gamma E_{kinF}; k_{xF}, k_{vF}, \gamma \beta M + \gamma k_{zF}\}$

Since $\beta \sim 1$ and $E_{kinF} << k_{zF}$:

 $E \sim p_z \sim E_{beam} (1 + k_{zF}/M)$

18x135 e+D "Fermi" effect

Any p-kick (IS or FS) along the "z" direction in the ion rest frame is magnified!

Minor point: z in this plot is defined along γ^*D axis not eD axis.

Angular acceptance for neutrons

From A. Kiselev

Spectator neutrons for k~375 MeV

Spectator Neutron e+D->e'+n+p+J/y for 350 MeV<k<400 MeV

Spectator Neutron e+D->e'+n+p+J/w for 350 MeV<k<400 MeV

Spectator neutrons are easy to detect Spectator protons look similar to neutrons – also easy??

Spectator neutrons for k~575 MeV

(but $|k_{z}| < ~450 \text{ MeV}$)

Spectator neutrons still detectable Spectator protons?

Struck neutrons for k~575 MeV

(but |k, < ~450 MeV)

Struck neutrons not fully contained in ZDC Again, struck protons have a similar distribution

Struck neutrons for k~375 MeV

(but |k_z|<450 MeV)

Struck neutrons still not fully contained in ZDC Struck protons have a similar distribution

Struck neutrons affected by collision

Keeping |t|<0.1 GeV² should contain neutrons in ZDC Should also keep nucleon breakup in check.

Correlations

For struck neutron, spectator proton – lab variables $|t|<0.1 \text{ GeV}^2$, 550 < k < 600 MeV $|k_z|<450 \text{ MeV}$

Keeping $|t| < 0.1 \text{ GeV}^2$ contains forward nucleons in $\theta < 5 \text{ mr}!$ Nucleons are back to back (in this simulation!)

Forward acceptance at a collider

Forward proton acceptance in e+p is DIFFERENT from e+A

Full JLEIC e+Pb simulation

Multiple events superimposed.

BeAGLE+GEMC

e+D will not look too different in the forward direction.

Similar plots from eRHIC coming soon.

SRC simulation: e+"D" inside of Pb?

Proposed JLAB LDRD FY2019-2020:

Tagged Short Range Correlations for Medium to Heavy lons at JLEIC

MDB, F. Hauenstein, O.Hen, D. Higinbotham (PI), C. Hyde, P. Nadel-Turonski, G. Wei, L. Zheng

- If approved, we plan to extend BeAGLE to simulate SRCs in e+C and higher, as well as refine the e+D simulation further.
- Today, just a couple of "back of the envelope" calculations from our proposal.

JLEIC Nuclear DIS Statistics at high x_{Bi}

~Universal to different nuclei, beam energy configurations

06-SEPT-2018

MDB

5 Auly 2018 2019 LDRD Higinbotham et al JLab LDRD Public Review Session, June 28, 2017

Kinematics in $e+A(w/p_F)$

- Q^2 is well-defined based on ee' γ^* vertex
- W^2 (or $x_B or v$) definition depends on your assumption about the incoming nucleon motion.
 - At rest in ion rest frame: Measure using e,e'.
 - Actual motion with nonzero k in ion rest frame: measure using hadronic subevent (IF YOU CAN!)
 - Fractional difference ΔW^2 (or Δx or Δv) ~ k_z/M
 - We can have x=1.5 measured by leptons and x=0.9 measured by γ^*N subevent (if we can pick it out!).

Lepton limitations

- Problem
 - Note $x = Q^2/y(s-M^2) = Q^2/4E_e^E_py$, so high x is low y.
 - $\sigma_x/x \sim \sigma_y/y \sim (1/y) \sigma(E_e')/E_e'$ gets ugly fast @ low y!
- Approach:
 - For e+p colliders: mix of leptonic and hadronic information at low y especially.
 - E665 e+A mostly restricted to y>0.2.
 - For collider e+A this is a research project!
 - Nuclear debris & mismatch of meaning ($\Delta \sim k_z/M$)

Kinematic reconstruction \rightarrow lower s

- Q²=4E_eE_N xy where E_N=ion energy/nucleon
 So Q²_{min}=4E_eE_N x y_{min}
- Optimistically assume y>0.01
 Q²>xE_xE_y/25

Conclusions

- SRCs @ an EIC present exciting possibilities
 - Good Q² reach at high x (x>0.1)
 - Good forward detection (we hope!?)
- Short-range correlations in e+A present big (coupled) challenges to:
 - Simulation
 - Reconstruction
 - Forward Detector Design
- We have our work cut out for us...

D. Higinbotham, G. A. Miller, O. Hen and K. Rith, CERN Cour. 53N4 (2013) 24.

BeAGLE Structure

Elke Aschenauer + MDB + J.H.Lee + Liang Zheng

From: https://wiki.bnl.gov/eic/index.php/BeAGLE

2-3 photons / per event. Half are in the forward TRF hemisphere: $\theta < 1/\gamma_{Pb}$ in lab or 8.5 mr for 18x110 (23 mr for 10x40). By momentum conservation: : WE EXPECT AT LEAST ONE SUCH PHOTON PER EVENT!

Results for all Data Sets

JLEIC Luminosity vs CM Energy

Plot is for ep For eA the per-nucleon luminosity is 1.5 x ep luminosity at E/A = E_p^*Z/A

Forward protons @ JLEIC

From V. Morozov

Glauber Map

Map for $\lambda >> R$

