DIS on the deuteron with spectator tagging: Theory, applications, simulations for EIC

C. Weiss (JLab), Short-range nuclear correlations at EIC, CFNS BNL, 07-Sep-2018

EIC simulations: JLab 2014/15 LDRD W. Cosyn, V. Guzey, D. Higinbotham, Ch. Hyde, K. Park, P. Nadel-Turonski, M. Sargsian, M. Strikman, C. Weiss* [Webpage]

Theory: Continuing effort Strikman, Weiss, PRC97 (2018) 035209 [INSP] + in preparation

- Light-ion phyiscs with EIC Objectives and challenges
- Deuteron and spectator tagging Theoretical framework

Free neutron from on-shell extrapolation

• Final-state interactions

Physical picture

Momentum and angular dependence

• Applications and extensions Diffractive DIS at $x \ll 0.1$

Tensor polarized deuteron, Δ isobars, . . .

Light ions: Physics objectives

[Nucleus rest frame view]

• Neutron structure

Flavor decomposition of PDFs/GPDs/TMDs, singlet vs. non-singlet QCD evolution, polarized gluon

Eliminate nuclear binding, non-nucleonic DOF!

• Nucleon interactions in QCD

Nuclear modification of quark/gluon densities Short-range correlations, non-nucleonic DOF QCD origin of nuclear forces

Associate modifications with interactions!

• Coherent phenomena in QCD

Coherent interaction of high–energy probe with multiple nucleons, shadowing, saturation

Identify coherent response!

Common challenge: Many possible nuclear configurations during high-energy process. Need to "control" configurations!

Light ions: Deuteron, spectator tagging

• Polarized deuteron

pn wave function simple, known well incl. light-front WF for high-energy procs

Neutron spin-polarized

 $\begin{array}{l} \mbox{Intrinsic } \Delta \mbox{ isobars suppressed by isospin} = 0 \\ |\mbox{deuteron}\rangle = |pn\rangle + \epsilon |\Delta\Delta\rangle \mbox{ negligible} \\ \mbox{3He spin structure distorted by } \Delta'\mbox{s. Guzey, Strikman, Thomas et al 01} \end{array}$

• Spectator nucleon tagging

Identifies active nucleon

Controls configuration through recoil momentum: Spatial size, S \leftrightarrow D wave

Typical momenta \sim few 10 – 100 MeV (rest frame)

Tagging in fixed-target experiments CLAS6/12 BONUS, recoil momenta p= 70-150 MeV ALERT, JLab Hall A \longrightarrow Talks Weinstein, Dupre

[Nucleus rest frame view]

Light ions: Deuteron, spectator tagging

Forward detection

• Spectator tagging with colliding beams

Spectator nucleon moves forward with approx. $1/2\ {\rm beam}\ {\rm momentum}$

Detection with forward detectors integrated in interaction region and beams optics LHC pp/pA/AA, Tevatron $p\bar{p}$, RHIC pp, ultraperipheral AA

• Advantages over fixed-target

No target material, $p_p(\text{restframe}) \rightarrow 0$ possible

Potentially full acceptance, good resolution

Can be used with polarized deuteron

Forward neutron detection possible

• Unique physics potential

Tagging: Cross section and observables

 $\frac{d\sigma}{dxdQ^{2}(d^{3}p_{p}/E_{p})} = [\text{flux}] \left[F_{Td}(x,Q^{2};\alpha_{p},p_{pT}) + \epsilon F_{Ld}(..) + \sqrt{2\epsilon(1+\epsilon)}\cos\phi_{p}F_{LT,d}(..) + \epsilon\cos(2\phi_{p})F_{TT,d}(..) + \text{spin-dependent structures} \right]$

 \bullet Conditional DIS cross section $e+d \rightarrow e' + X + p$

Proton recoil momentum $p_p^+ = E_p + p_p^z$, p_{pT} , light-front momentum fraction $p_p^+ = \alpha_p p_d^+/2$, simply related to p_p (restframe)

Conditional structure functions

Special case of semi-inclusive DIS — target fragmentation QCD factorization Trentadue, Veneziano 93; Collins 97

No assumptions re nuclear structure, $A = \sum N$, etc.

Tagging: Theoretical description

• Light-front quantization \rightarrow Talks Strikman, Miller

High-energy scattering probes nucleus at fixed light-front time $x^+ = x^0 + x^3 = \text{const.}$

Deuteron LF wave function $\langle pn|d \rangle = \Psi(\alpha_p, \boldsymbol{p}_{pT})$

Permits matching nuclear ↔ nucleonic structure Conserves LF momentum, baryon number Frankfurt, Strikman 80's

Low-energy nuclear structure, cf. non-relativistic theory!

• Composite description

Impulse approximation: DIS final state and spectator nucleon evolve independently

Final-state interactions: Part of DIS final state interacts with spectator, transfers momentum

6

Tagging: Free neutron structure

• Extract free neutron structure

Proton momentum defines neutron virtuality $t - M_N^2 = -2|{m p}_p({\rm rest})|^2 + t_{\min}$

Free neutron at pole $t - M_N^2 = 0$: On-shell extrapolation

Eliminates nuclear binding effects and FSI Sargsian, Strikman 05

• Precise measurements of F_{2n}

 F_{2n} extracted with few-percent accuracy at $x\gtrsim 0.1$

Uncertainty mainly systematic LDRD project: Detailed estimates

Non-singlet $F_{2p} - F_{2n}$, sea quark flavor asymmetry $\bar{d} - \bar{u}$

7

Tagging: Neutron spin structure

• Neutron spin structure with pol deuteron and proton tagging

On-shell extrapolation of asymmetry

D-wave suppressed at $p_p(rest) = 0$: Neutron 100% polarized

• Systematic uncertainties cancel

Weak off-shell dependence of asymmetry

Momentum smearing/resolution effects largely cancel in asymmetry

• Statistics requirements

Physical asymmetries \sim 0.05-0.1, effective polarization $P_eP_D\sim 0.5$

Possible with int lumi \sim few 10 fb $^{-1}$

Tagging: Neutron spin structure II

• Precise measurement of neutron spin structure

Wide kinematic range: Leading \leftrightarrow higher twist, nonsinglet \leftrightarrow singlet QCD evolution Parton density fits: Flavor separation $\Delta u \leftrightarrow \Delta d$, gluon spin ΔG Nonsinglet $g_{1p} - g_{1n}$ and Bjorken sum rule

FSI: Physical picture

- DIS final state can interact with spectator
 Changes recoil momentum distributions in tagging
 No effect on total cross section closure
- Nucleon DIS final state has two components

"Fast"	$E_h = O(\nu)$	hadrons formed outside nucleus interact weakly with spectators
"Slow"	$E_h = O(\mu_{ m had}) \sim 1 \; { m GeV}$	formed inside nucleus interacts with hadronic cross section dominant source of FSI, cf. factorization

• FSI effects calculated $x \sim 0.1-0.5$

Strikman, CW, PRC97 (2018) 035209

Experimental slow-hadron multiplicity distributionsCornell, EMC, HERAHadron-nucleon low-energy scattering amplitudesLight-front QM: Deuteron pn wave function, rescattering process

FSI: Slow hadrons from nucleon fragmentation 11

• Kinematic variables

 $egin{array}{lll} \zeta_h, oldsymbol{p}_{hT} & ext{hadron LC mom} & \zeta_h \leftrightarrow x_{ ext{F}} \end{array}$ Slow hadrons in rest frame have $\zeta_h \sim 1$ $\zeta_h < 1-x$ kinematic limit

- Momentum distribution in rest frame
 Cone opening in virtual photon direction
 No backward movers if h = nucleon
- Experimental data

HERA x<0.01: $x_{\rm F}$ distns of p,n, scaling Cornell x>0.1: Momentum distns of p,π Neutrino DIS data $x\sim0.1$

EIC should measure nucleon fragmentation! Nucleon structure physics (fracture fns), input for nuclear FSI

FSI: Momentum and angular dependence

- Momentum and angular dependence in rest frame
 - $p_p < 300 \text{ MeV}$ IA × FSI interference, absorptive, weak angular dependence $p_p > 300 \text{ MeV}$ IA $|^2$, refractive, strong angular dependence

Similar dependence observed in quasi-elastic $e+d \rightarrow e'+n+p$

FSI: Effect on on-shell extrapolation

- FSI reduces IA cross section at $|t M_N^2| \neq 0$ ($\lesssim 0.2 \, \text{GeV}^2$)
- FSI vanishes at $t M_N^2 \rightarrow 0$; on-shell extrapolation not affected

FSI: Large x

• FSI suppressed for $x \to 1$: Minimum momentum of "slow" hadrons grows FSI in subasymptotic regime, higher-twist: Cosyn, Sargsian 2010+

FSI: Diffraction at small x

• Diffraction in nucleon DIS at $x \ll 0.1$

Nucleon remains intact, recoils with $k \sim$ few 100 MeV (rest frame)

10-15% of events diffractive. Detailed studies at HERA: QCD factorization, diffractive PDFs

• Shadowing in deuteron DIS

Diffraction can happen on neutron or proton: QM interference

Reduction of cross section compared to IA — shadowing. Leading-twist effect. Frankfurt, Strikman, Guzey 12. Great interest. Hints seen in J/ψ production in UPCs at LHC ALICE.

• Diffraction and shadowing in tagged DIS

Differential studies as function of recoil momentum!

Large FSI effects. Outgoing pn scattering state must be orthogonal to d bound state $_{\rm Guzey,\ Strikman,\ CW\ 18}$

FSI: Diffraction at small x

 $R = rac{d\sigma({
m full})}{d\sigma({
m IA})}$ as function of neutron $m{p}_{nT}$ for fixed proton $m{p}_{pT}$

• Final-state interactions in diffractive tagged DIS $e + d \rightarrow e' + X + n + p$

Large FSI effects due to orthogonality

Shadowing effects also calculated; can be studied in selected kinematics Guzey, Strikman, CW, in preparation

Other application: High- p_T deuteron breakup and gluonic structure of small-size pn configuration Miller, Sievert, Venugopalan 17

Tagging: Applications and extensions

• Tagged EMC effect

What momenta/distances cause modification? Connection with NN short-range correlations? FSI effects large — need theory, data

• Tagging Δ isobars

Tagged DIS $e + d \rightarrow e' + \pi + N$, reconstruct Δ

• Tagging with tensor-polarized deuteron

 ϕ harmonics specific to tensor polarization Cosyn, Sargsian, CW; in progress

• Tagging with complex nuclei A > 2

Test isospin dependence and/or universality of bound nucleon structure \rightarrow Talk Dupre

(A - 1) ground state recoil, e.g. 3He (e, e' d) X Ciofi, Kaptari, Scopetta 99; Kaptari et al. 2014 Theoretically challenging, cf. experience with quasielastic breakup JLab Hall A

EIC simulations: Forward detection

• Forward detector integrated in IR and beam optics

 \rightarrow Talks Lee, Baker

Protons/neutrons/fragments travel through ion beam quadrupole magnets

Dispersion generated by dipole magnets

Detection using forward detectors — Roman pots, ZDCs

Tagging studies: Full acceptance, proton momentum resolution longit $\delta p/p \sim 10^{-3}$, angular $\delta \theta \sim 0.2$ mrad P. Nadel-Turonski, Ch. Hyde et al.

• Intrinsic momentum spread in ion beam

Transverse momentum spread $\sigma \sim$ few 10 MeV

Smearing effect $p_{pT}(vertex) \neq p_{pT}(measured)$, partly corrected by convolution

Dominant systematic uncertainty in tagged neutron structure measurements. Correlated, x and $Q^2\text{-indpendent}.\ _{\rm JLab}\ _{\rm LDRD}$

Summary

• Deuteron and spectator tagging overcome main limiting factor of nuclear DIS: Control of nuclear configurations during high-energy process

Free neutron structure from on-shell extrapolation JLab 2014/15 LDRD Project [Webpage]

• FSI between spectator and slow hadrons produced in nucleon fragmentation

Respects QCD factorization theorem for target fragmentation

Modifies momentum distribution, preserves total cross section

Vanishes at on-shell point

Produces sizable effects for recoil momenta $p_p \sim$ few 100 MeV

• Extension to A > 2 light ions requires nuclear structure input

Light-front momentum distributions, spectral functions, decay functions

Correspondence light-front ↔ nonrelativistic structure Workshop "Polarized light ion physics with EIC", 5-9 Feb 2018, Ghent U, Belgium [Webpage]

• Ready for simulations with next-level physics and detector models