CFNS Stony Brook

Deep Virtual Production of Pion Pairs

Dilini Bulumulla
Advisor : Dr. Charles Hyde
Old Dominion University
6 June 2018

- We are mainly considering two reactions, Charged and Neutral Pion Pairs
- ep $\rightarrow e^{\prime} p^{\prime} \pi^{+} \pi^{-}$
- Isospin $\mathrm{I}=1$, angular momentum $\mathrm{J}=1$
- $\boldsymbol{\rho}(770)$
- Isospin $\mathrm{I}=0$, angular momentum $\mathrm{J}=0$
- $\boldsymbol{f}_{\mathbf{0}}(500)=\sigma, f_{0}(\mathbf{9 8 0})$
- ep $\rightarrow e^{\prime} p^{\prime} \pi^{0} \pi^{0}$
- Isospin zero, spin zero channel ($\mathrm{I}: \mathrm{J}=0: 0$)
- $f_{0}(500)=\sigma, \quad f_{0}(980)$

Deep Virtual Factorivation

- Leading order diagrams for exclusive deep virtual production of two pions

B. Lehmann-Dronke et al., Phys Lett B 475 (2000) 147
B. Lehmann-Dronke et al., Phys Rev D, 63 (2001) 114001

Neutral mesonic final state: $\pi^{+} \pi^{-}$or $\pi^{0} \pi^{0}$
a) [Flavor-Diagonal quark-GPD] $\otimes[q \bar{q}$-Two-Pion Distribution Amplitude (DA)]
b) [Flavor-Diagonal quark-GPD] $\otimes[$ gluon-Two-Pion Distribution Amplitude(DA)]
c) [Gluon-GPD] $\otimes[q \bar{q}-$ Two-Pion Distribution Amplitude (DA)]

- σ-meson Asymptotic Distribution Amplitudes:
- $\boldsymbol{\phi}_{\text {gluon }}=2 \boldsymbol{\phi}_{\text {qq }}$
- σ-meson: $f_{0}(500)$ well established.
- Pole $=(450 \pm 20) \mathrm{MeV}-i(275 \pm 12) \mathrm{MeV})$

- Microscopic structure of $f_{0}(500)$ not well understood.
- $q \bar{q}:{ }^{3} \mathrm{P}_{0}$
- Tetraquark
- $\pi \pi$-molecule
- Glueball
- Superposition of all of the above
- Deep sigma-production offers intriguing probe of gluonic content of $f_{0}(500)$.

Deep virtual Tй Production Amplitude

- Deep Virtual $\boldsymbol{\pi} \pi$ Production Amplitude

$$
\mathscr{M}=\sum_{\lambda_{N}, \lambda_{\pi} \in(q \bar{q}, g)} \int d \tau d z \operatorname{GPD}_{\lambda_{N}}(\tau, \xi, t) \odot S_{\lambda_{N}, \lambda_{\pi}}(\tau, z, \xi) \odot \mathrm{DA}_{\lambda_{\pi}}^{I}\left(z, \zeta ; m_{\pi \pi}: \theta^{*}\right)
$$

$$
\mathscr{M}=\sum_{\substack{J^{\pi}: I \\ \lambda_{N}, \lambda_{\pi} \in(q \bar{q}, g)}} \int d \tau d z \mathrm{GPD}_{\lambda_{N}}(\tau, \xi, t) \odot S_{\lambda_{N}, \lambda_{\pi}}(\tau, z, \xi) \odot \mathrm{DA}_{\lambda_{\pi}}^{I}(z, \zeta) P_{J}\left(\cos \left(\theta^{*}\right) \Omega_{J: I}\left(m_{\pi \pi}\right)\right.
$$

- Kinematics

$$
\begin{aligned}
\xi & \sim \frac{x_{B}}{2-x_{B}} \\
t & =\left(q-p_{\pi \pi}\right)^{2}=\left(P_{p}^{\prime}-P_{p}\right)^{2} \\
\zeta,(1-\zeta) & =\frac{1}{2}\left[1 \pm \beta^{*} \cos \theta^{*}\right]=\text { pion lightcone momentum fractions } \\
\beta^{*} & =\text { pion velocity in } \pi \pi \text { rest frame } \\
\theta^{*} & =\text { pion polar angle in } \pi \pi \text { rest frame }
\end{aligned}
$$

- Dynamics
- $S(\tau, z ; \xi)=$ Hard scattering amplitude (quark-gluon propagators)
- $\Omega_{J ; I}=$ Omnès-function, derived from $\pi \pi$ phase shifts
- $\tau=$ average momentum fraction of parton in nucleon
- $z=$ momentum fraction of parton in $\pi \pi$ DA

пॉ Mass Distribution (Omnès $\mathrm{F}^{9} \mathrm{n}$)

$$
\Omega_{l}^{I}\left(m_{\pi \pi}\right)=\exp \left\{i \delta_{l}^{I}\left(m_{\pi \pi}\right)+\frac{m_{\pi \pi}^{2}}{\pi} \Re \mathrm{e}\left[\int_{4 m_{\pi}^{2}}^{\infty} d s \frac{\delta_{l}^{I}(s)}{s\left(s-m_{\pi \pi}^{2}-i \epsilon\right)}\right]\right\}
$$

шॉ Omnès F'n I;J = 1;1 (ρ-meson)

- L.Dai, M.Pennington, Phys Rev D 90036004 (2014)

$$
\Omega_{l}^{I}\left(m_{\pi \pi}\right)=\exp \left\{i \delta_{l}^{I}\left(m_{\pi \pi}\right)+\frac{m_{\pi \pi}^{2}}{\pi} \Re \mathrm{e}\left[\int_{4 m_{\pi}^{2}}^{\infty} d s \frac{\delta_{l}^{I}(s)}{s\left(s-m_{\pi \pi}^{2}-i \epsilon\right)}\right]\right\}
$$

- Monte-Carlo Generation of Phase Space Variables
- There are eight independent kinematic variables in the final state of the $e p \rightarrow e^{\prime} p^{\prime} \pi \pi$ reaction.

Total kinematic variables in final state (four 4-vectors)	16
Mass constraint of the four final state particles	-4
Four-Momentum Conservation, initial to final state	-4
Total number of independent variables in final state	8

- These are,
- $Q^{2}, x_{B}, \phi_{e}, M_{1,2}^{2}, t, \phi_{1,2}^{*}, \cos \theta_{\sigma_{-} R e s t}, \phi_{\sigma_{-} \text {Rest }}$

1. First consider the reaction $\boldsymbol{e}+\boldsymbol{p} \rightarrow \boldsymbol{e}^{\prime}+\boldsymbol{p}^{\prime}+\boldsymbol{\pi}^{+}+\boldsymbol{\pi}^{-}$

- Four Particles in final state

2. Secondly consider the reaction $\boldsymbol{e}+\boldsymbol{p} \rightarrow \boldsymbol{e}^{\prime}+\boldsymbol{p}^{\prime}+\boldsymbol{\pi}^{\mathbf{0}}+\boldsymbol{\pi}^{\mathbf{0}}$, its primary mode of decay is $\boldsymbol{\pi}^{\mathbf{0}} \boldsymbol{\rightarrow} \boldsymbol{\gamma} \boldsymbol{\gamma}$

6 particles in final state

- Scattered electron
- Recoil Proton
- Two $\boldsymbol{\pi}^{\mathbf{0}} \mathrm{s} \Rightarrow$ Four gamma-rays

Simulation and Reconstruction

- For my simulation and reconstruction, I used

GEMC version 4a.2.1
 COATJAVA version 4a.8.2

Steps :

- After generation monte-carlo data is passed through the GEMC in the form of LUND format.
- Reconstruction is done with coatjava.
- CLAS12 analyses are done with groovy scripts (java).
- This method ties well with the coatjava framework and provides standard tools for reading EVIO files and reconstructed banks.

Missing mass for $e p \rightarrow e p \pi^{+} X$

- Missing mass squared reconstruction of $\boldsymbol{\pi}$

CLAS12 Detection \otimes reconstruction efficiency $\approx 14 \%$

Missing mass for $e p \rightarrow e p \pi X$

- Missing mass squared reconstruction of $\boldsymbol{\pi}^{+}$

CLAS12 Detection \otimes reconstruction efficiency $\approx 11 \%$

Missing mass for $e p \rightarrow e \pi^{+} \pi^{-} X$

- Missing mass squared reconstruction of p

CLAS12 Detection \otimes reconstruction efficiency $\approx 8 \%$

- Secondly, consider the reaction, $\boldsymbol{e p} \rightarrow \boldsymbol{e}^{\prime} \boldsymbol{p}{ }^{\prime} \boldsymbol{\pi}^{\mathbf{0}} \boldsymbol{\pi}^{\mathbf{0}}$, and $\boldsymbol{\pi}^{\mathbf{0}}$ decays into two gammas $\left(\boldsymbol{\pi}^{\mathbf{0}} \rightarrow \boldsymbol{\gamma} \boldsymbol{\gamma}\right)$.
- Expected two photon invariant mass peak

Missing mass for $e p \rightarrow e^{\prime} p^{\prime} \pi^{0} X$

- Reconstruct (missing) second π^{0}
- Apply a cut on $\gamma \gamma$ invariant mass : $0.10<m_{\gamma \gamma}<0.17 \mathrm{GeV}$
- Second π^{0} reconstructing by peak in $\mathrm{H}\left(\mathrm{e}, \mathrm{e}^{\prime} \mathrm{p} \pi^{0}\right) \mathrm{X}$ missing mass squared at $0.02 \mathrm{GeV}^{2}$

CLAS12 Detection \otimes reconstruction efficiency $\approx 2 \%$

\mathbf{Q}^{2} vs x_{B} for $H\left(e, e^{\prime} p\right) X$

- Data from Spring 2018 CLAS12, 4 hours of run.
- Apply a cut on :

$$
\begin{aligned}
& W^{2}>4 \mathrm{GeV}^{2} \\
& M_{X}^{2}<2 \mathrm{GeV}^{2}
\end{aligned}
$$

Conclusion

- Calibration/analysis of Spring 2018 CLAS12 data in progress
- Data taking (CLAS12 Run Group A/K) will continue in Fall 2018
- $10.6,7.5,6.5 \mathrm{GeV}$ electrons
- Preparing a run group proposal
- Implementing Lehmann-Dronke Model in simulation
- Need improved model for e.g. rho-production
- SCHC violating amplitudes?
- Theory work on deep ρ
- Goloskokov, Kroll Eur.Phys.J. C74 (2014) 2725
- Predictions for 11 GeV ? ($\mathrm{W} \sim 3 \mathrm{GeV}$)
- C.Weiss: Instanton dynamics as source of s-channel helicity violation?

Back up Slides

Deep ρ meson Problem

- S-channel helicity conservation violated
- Cross section is anomalously large at low W

The Deep ϕ-meson

- Corrections up to factor of 10 to leading-order factorization at Jlab kinematics
- Successful phenomenology with finite-size $/ \chi \mathrm{SB}$ in $\gamma \rightarrow$ meson amplitud and kinematic higher twist in proton GPD.
- Deep $\pi^{0}, \eta: \chi$ SB Twist-3 $\mathrm{DA}^{\otimes} \mathrm{GPD}_{\mathrm{T}}$
- $d \sigma_{\mathrm{T}} \gg \mathrm{d} \sigma_{\mathrm{L}}$
- (Recent Hall A and CLAS results)
- Deep ϕ : Sudakov form factor (finite-size) suppression:
- CLAS/HERMES/HERA data \rightarrow

Basic Kinematics and Observables

- Here are the exclusive two-pion electroproduction kinematics on a proton using the following momentum variables:

$$
e(k)+P(P) \rightarrow e\left(k^{\prime}\right)+\pi_{1}\left(p_{1}\right)+\pi_{2}\left(p_{2}\right)+P\left(P^{\prime}\right)
$$

- $q=k-k^{\prime}$
- $q^{2}=-Q^{2}=4 E E^{\prime} \sin ^{2}\left(\frac{\theta}{2}\right)$
- $v=E-E^{\prime}$
- $W^{2}=(P+q)^{2}$
- $x_{\mathrm{B}}=\frac{Q^{2}}{2 P . q}$
- $\Delta=P^{\prime}-P$ and $\Delta^{2}=t<0$

- $\left(p_{1}+p_{2}\right)^{2}=m_{\pi \pi}^{2}$
- $q^{\prime}=p_{1}+p_{2}$ (e.g. σ or ρ meson)

Deep Virtual Exclusive Scattering (DVES)

- ep $\rightarrow e^{\prime} p^{\prime} h \quad$ where h is the hadronic system
i.e a meson

- The interaction of the scattered electron with a parton (HARD), calculable through perturbative QCD, and the parton interaction with the proton (SOFT), described in terms of GPDs and another soft part describes the meson production.

Event Generator Results

Analysis

- Treat pi-minus as "missing" even if detected
- Here is the cosine distribution of detected pi+ in rest frame
- piplus is always forward, if detected.

