CFNS Stony Brook

Deep Virtual Production of Pion Pairs

Dilini Bulumulla Advisor : Dr. Charles Hyde Old Dominion University 6 June 2018

• We are mainly considering two reactions, Charged and Neutral Pion Pairs

•
$$ep \rightarrow e'p'\pi^+\pi^-$$

• Isospin I=1, angular momentum J=1
• $\rho(770)$

• Isospin I=0, angular momentum J=0

•
$$f_0(500) = \sigma, f_0(980)$$

•
$$ep \rightarrow e'p'\pi^0\pi^0$$

Isospin zero, spin zero channel (I:J=0:0)
 f₀(500) = σ, f₀(980)

Deep Virtual Factorization

• Leading order diagrams for exclusive deep virtual production of two pions

- B. Lehmann-Dronke et al., Phys Lett B 475 (2000) 147
- B. Lehmann-Dronke et al., Phys Rev D, 63 (2001) 114001

Neutral mesonic final state: $\pi^+\pi^- \text{ or } \pi^0\pi^0$

- a) [Flavor-Diagonal quark-GPD] \otimes [$q\bar{q}$ -Two-Pion Distribution Amplitude (DA)]
- b) [Flavor-Diagonal quark-GPD] @[gluon-Two-Pion Distribution Amplitude(DA)]
- c) [Gluon-GPD] \otimes [$q\bar{q}$ -Two-Pion Distribution Amplitude (DA)]

Deep sigma

- σ-meson Asymptotic Distribution Amplitudes:
 - $\mathbf{\Phi}_{gluon} = 2 \mathbf{\Phi}_{qq}$
- σ -meson: $f_0(500)$ well established.
 - $Pole = (450 \pm 20)MeV i(275 \pm 12)MeV)$
- Microscopic structure of $f_0(500)$ not well understood.
 - $q\overline{q}$: ${}^{3}\mathrm{P}_{0}$
 - Tetraquark
 - $\pi\pi$ -molecule
 - Glueball
 - Superposition of all of the above
- Deep sigma-production offers intriguing probe of gluonic content of $f_0(500)$.

γ*

000000

000000

N

Deep virtual $\pi\pi$ Production Amplitude

• Deep Virtual $\pi\pi$ Production Amplitude

$$\mathscr{M} = \sum_{\substack{I\\\lambda_N,\lambda_\pi \in (q\bar{q},g)}} \int d\tau dz \text{GPD}_{\lambda_N}(\tau,\xi,t) \odot S_{\lambda_N,\lambda_\pi}(\tau,z,\xi) \odot \text{DA}_{\lambda_\pi}^I(z,\zeta;m_{\pi\pi}:\theta^*)$$

$$\mathscr{M} = \sum_{\substack{J^{\pi}: I\\\lambda_{N}, \lambda_{\pi} \in (q\bar{q},g)}} \int d\tau dz \operatorname{GPD}_{\lambda_{N}}(\tau,\xi,t) \odot S_{\lambda_{N},\lambda_{\pi}}(\tau,z,\xi) \odot \operatorname{DA}_{\lambda_{\pi}}^{I}(z,\zeta) P_{J}(\cos(\theta^{*})\Omega_{J:I}(m_{\pi\pi}))$$

Kinematics

$$\begin{aligned} \xi &\sim \frac{x_B}{2 - x_B} \\ t &= (q - p_{\pi\pi})^2 = \left(P'_p - P_p\right)^2 \\ \zeta, \ (1 - \zeta) &= \frac{1}{2} \left[1 \pm \beta^* \cos \theta^*\right] = \text{ pion lightcone momentum fractions} \\ \beta^* &= \text{ pion velocity in } \pi\pi \text{ rest frame} \\ \theta^* &= \text{ pion polar angle in } \pi\pi \text{ rest frame} \end{aligned}$$

- Dynamics
 - $S(\tau, z; \xi)$ = Hard scattering amplitude (quark-gluon propagators)
 - $\Omega_{J;I} = \text{Omnès-function, derived from } \pi\pi$ phase shifts
 - τ = average momentum fraction of parton in nucleon
 - z = momentum fraction of parton in $\pi\pi$ DA

Dilini Bulumulla

$\pi\pi$ Mass Distribution (Omnès F'n)

Dilini Bulumulla

CFNS Stony Brook

06/06/2018

7

L.Dai, M.Pennington, Phys
 Rev D 90 036004 (2014)

Dilini Bulumulla

Simulation : Event Generation

- Monte-Carlo Generation of Phase Space Variables
 - There are eight independent kinematic variables in the final state of the $ep \rightarrow e'p'\pi\pi$ reaction.

Total kinematic variables in final state (four 4-vectors)	16
Mass constraint of the four final state particles	-4
Four-Momentum Conservation, initial to final state	-4
Total number of independent variables in final state	8

• These are,

•
$$Q^2$$
, $x_{B_{,}} \phi_e$, $M^2_{1,2}$, t , $\phi^*_{1,2}$, $cos\theta_{\sigma_Rest}$, ϕ_{σ_Rest}

Reactions

1. First consider the reaction $e + p \rightarrow e' + p' + \pi^+ + \pi^-$

Four Particles in final state

2. Secondly consider the reaction $e + p \rightarrow e' + p' + \pi^0 + \pi^0$, its primary mode of decay is $\pi^0 \rightarrow \gamma \gamma$

6 particles in final state

- Scattered electron
- Recoil Proton
- Two π^0 s \Rightarrow Four gamma-rays

Simulation and Reconstruction

• For my simulation and reconstruction, I used GEMC version 4a.2.1 COATJAVA version 4a.8.2

Steps :

- After generation monte-carlo data is passed through the GEMC in the form of LUND format.
- Reconstruction is done with coatjava.
- CLAS12 analyses are done with **groovy** scripts (java).
- This method ties well with the coatjava framework and provides standard tools for reading EVIO files and reconstructed banks.

Missing mass for $ep \rightarrow e \ p \ \pi^{\top} X$

CLAS12 Detection ⊗ reconstruction efficiency ≈ 14%

Missing mass for $ep \rightarrow e p \pi^- X$

• Missing mass squared reconstruction of π^+

CLAS12 Detection ⊗ reconstruction efficiency ≈ 11%

lini	Dii	lumul	1-
	DU	iumui	la

14

Missing mass for $ep \rightarrow e \pi^+ \pi^- \lambda$

CLAS12 Detection ⊗ reconstruction efficiency ≈ 8%

$\gamma\gamma$ Invariant mass for $ep \rightarrow e' p' \pi^0 \pi^0$

- Secondly, consider the reaction,
 ep → *e* '*p* ' π⁰ π⁰, and π⁰ decays into two gammas (π⁰ → γγ).
- Expected two photon invariant mass peak

Missing mass for $ep \rightarrow e'p' \pi^0 X$

- Reconstruct (missing) second π^0
- Apply a cut on $\gamma\gamma$ invariant mass : $0.10 < m_{\gamma\gamma} < 0.17 \text{ GeV}$
- Second π⁰ reconstructing by peak in H(e,e'p π⁰)X missing mass squared at 0.02 GeV²

CLAS12 Detection *⊗* reconstruction efficiency *≈* 2%

Q^2 vs x_B for H(e, e' p)X

Data from Spring 2018 CLAS12, 4 hours of run.

Apply a cut on : $W^2 > 4 \ GeV^2$ $M_X^2 < 2 \ GeV^2$

Conclusion

- Calibration/analysis of Spring 2018 CLAS12 data in progress
- Data taking (CLAS12 Run Group A/K) will continue in Fall 2018
 - 10.6, 7.5, 6.5 GeV electrons
- Preparing a run group proposal
 - Implementing Lehmann-Dronke Model in simulation
 - Need improved model for e.g. rho-production
 - SCHC violating amplitudes?
 - Theory work on deep ρ
 - Goloskokov, Kroll Eur.Phys.J. C74 (2014) 2725
 - Predictions for 11GeV? (W~3 GeV)
 - C.Weiss: Instanton dynamics as source of s-channel helicity violation?

Back up Slides

Deep p meson Problem

- S-channel helicity conservation violated
- Cross section is anomalously large at low W

The Deep ϕ -meson

- Corrections up to factor of 10 to leading-order factorization at Jlab kinematics
- Successful phenomenology with finite-size/ χ SB in $\gamma \rightarrow$ meson amplitud and kinematic higher twist in proton GPD.
 - Deep π^0 , η : χ SB Twist-3 DA \otimes GPD_T

• $d\sigma_T >> d\sigma_L$

• (Recent Hall A and CLAS results)

Basic Kinematics and Observables

 Here are the exclusive two-pion electroproduction kinematics on a proton using the following momentum variables:

$$e(k) + P(P) \rightarrow e(k') + \pi_1(p_1) + \pi_2(p_2) + P(P')$$
.

Deep Virtual Exclusive Scattering (DVES)

• The interaction of the scattered electron with a parton (HARD), calculable through perturbative QCD, and the parton interaction with the proton (SOFT), described in terms of GPDs and another soft part describes the meson production.

Event Generator Results

06/06/2018

Analysis

- Treat pi-minus as "missing" even if detected
- Here is the cosine distribution of detected pi+ in rest frame
- piplus is always forward, if detected.

Dilini Bulumulla

CFNS Stony Brook