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• I would not call [entanglement] one but rather the characteristic trait of
quantum mechanics, the one that enforces its entire departure from
classical lines of thought. [� Erwin Schrödinger �]

• Quantum entanglement has emerged as a universal phenomenon
underlying the behavior of strongly interacting systems across vastly
di�erent scales. The workshop will address the use of methods based on
quantum entanglement to address the hadron structure and thermalization
in high energy collisions. We plan to bring together the experts working on
the theory and applications of quantum entanglement in high energy,
nuclear, condensed matter, and cold atom physics with the goal of �nding
new approaches to the long-standing problems of quark con�nement and
hadron structure. [� Quantum Entanglement at Collider Energies �]



Quantum entanglement; basic setup

• Local quantum operations and classical communications (LOCC):

ρ −→ (A⊗B)ρ(A⊗B)†

but not ρ −→ KAB ρK
†
AB .

• �Quantum entanglement� = What cannot be generated by LOCC.



Quantum entanglement; how to quantify it?

• von-Neumann entanglement entropy:

SA := −TrA(ρA log ρA)

where ρA is the reduced density matrix.

ρA := TrBρA∪B

• SA for pure state ρA∪B = |Ψ〉〈Ψ| decreases monotonically under LOCC.

• How to measure it experimentally? [R. Islam, R. Ma, P. M. Preiss, M. E.

Tai, A. Lukin, M. N. Rispoli, M. Greiner, Nature (2015)]



Entanglement in mixed states?

• How to quantify quantum entanglement between A and B when ρA∪B is
mixed ? E.g., �nite temperature, A,B is a part of bigger system.

• The entanglement entropy is an entanglement measure only for pure
states. It is not monotone under LOCC.



Partial transpose (bosonic case)

• De�nition: for an operator M , its partial transpose MTB is

〈e(A)
i e

(B)
j |M

TB |e(A)
k e

(B)
l 〉 := 〈e(A)
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where |e(A,B)
i 〉 is the basis of HA,B .



Partial transpose and entanglement



Partial transpose and quantum entanglement

• Bell pair:|Ψ〉 = 1√
2

[|01〉 − |10〉]

ρ = |Ψ〉〈Ψ| =
1

2
[|01〉〈01|+ |10〉〈10| − |01〉〈10| − |10〉〈01|]

• Partial transpose:

ρT2 =
1

2
[|01〉〈01|+ |10〉〈10| − |00〉〈11| − |11〉〈00|]

• Entangled states are badly a�ected by partial transpose:
Negative eigenvalues: Spec(ρT2) = {1/2, 1/2, 1/2,−1/2}.

• C.f. For a classical state:

ρ =
1

2
[|00〉〈00|+ |11〉〈11|] = ρT2



Partial transpose and Entanglement negativity

• Entanglement negativity and logarithmic negativity, using partial
transpose,

N (ρ) :=
1

2

(
||ρTB ||1 − 1

)
, E (ρ) := log ||ρTB ||1,

[Peres (96), Horodecki-Horodecki-Horodecki (96), Vidal-Werner (02), Plenio

(05) ...]

• For mixed states, Negativity can extract quantum correlations only.

• The logarithmic negativity is not convex but an entanglement monotone.
[Plenio (2005)]
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Part I: Partial transpose and negativity in fermionic systems

• Partial transpose is useful to detect entanglement in many-body states.

• How about fermion systems? E.g., the Kitaev chain

• Based on:
• �Partial time-reversal transformation and entanglement negativity in

fermionic systems�, arXiv:1611.07536
• "Entanglement negativity of fermions: monotonicity, separability criterion

and classi�cation of few-mode states ", arXiv:1804.08637
• �Finite-temperature entanglement negativity of Fermi surface�,

arXiv:1807.09808



The Kitaev chain

• The Kitaev chain

H =
∑
j

[
− tc†jcj+1 + ∆c†j+1c

†
j + h.c.

]
− µ

∑
j

c†jcj

• Phase diagram: there are only two phases:

• Topologically non-trivial phase is realized when 2|t| ≥ |µ|.



Ground state; Majorana dimers

• Fractionalizing an electron into two Majoranas:

cx = cLx + icRx , c†x = cLx − icRx .



Issues in fermionic systems (1)

• Consider log negativity E for two adjacent intervals of equal length.
(L = 4` = 8)

• Vertical axis: µ/t ranging from 0 to 6.

• (Blue circles and Red corsses) is computed by Jordan-Wigner + bosonic
partial transpose

• Log negativity fails to capture Majorana dimers.



Issues in fermionic systems (2)

• Partial transpose of bosonic Gaussian states is still Gaussian; easy to
compute by using the correlation matrix

• Partial transpose of fermionic Gaussian states are not Gaussian
• ρT1 can be written in terms of two Gaussian operators O±:

ρT1 =
1− i

2
O+ +

1 + i

2
O−

• Negativity estimators/bounds using Tr [
√
O+O−] [Herzog-Y. Wang (16),

Eisert-Eisler-Zimborás (16)]
• Spin structures: [Coser-Tonni-Calabrese, Herzog-Wang]



Partial transpose for fermions � our de�nition

[Shiozaki-Shapourian-SR (16)]

• Fermion operator algebra does not trivially factorize for HA1 ⊗HA2 .

• Expand the density matrix in terms of Majorana fermions:

ρA = const.+
∑
p1,2

ρp1p2cp1cp2 +
∑

p1,...,4

ρp1p2p3p4cp1cp2cp3cp4 + · · ·

• Group them in terms of subregions:

ρA =

m+n=even∑
m,n

∑
{pi,qj}

ρpi,qj c
A1
p1
· · · cA1

pm︸ ︷︷ ︸
∈A1

cA2
q1
· · · cA2

qn︸ ︷︷ ︸
∈A2

• De�ne partial transpose by ρp,q → ρp,qi
m:

ρT1
A =

m+n=even∑
m,n

∑
{pi,qj}

ρpi,qj i
mcA1

p1
· · · cA1

pm
cA2
q1
· · · cA2

qn

• C.f. fermionic matrix product states perspective [Bultinck et al]

• Gaussian states stay Gaussian under our partial transpose



Comparison with previous de�nitions

[Shiozaki-Shapourian-SR (16)]

• (Blue circles and Red crosses): Old (bosonic) de�nition

• (Green triangles and Orange triangles) Our de�nition;

• At critical point: agrees with CFT prediction by Calabrese-Cardy-Tonni.



Motivation behind the construction

• Partial transpose can change the topology of spacetime: quantum �eld
theory on an unoriented spacetime [Pollmann-Turner, Calabrese-Cardy-Tonni,

Shiozaki-SR]

• In the topological phase, the path integral on an unoriented spacetime can
be computed using topological quantum �eld theory (TQFT).

• The relevant TQFT are invertible, fermionic and de�ned on unoriented
spacetime (�Pin� TQFT) [Kapustin, Hsieh-Cho-Sule-SR-Leigh,

Kapustin-Thorngren-Turzillo-Wang, Hsieh-Cho-SR, Witten, Freed-Hopkins,

Metlitski, Barkeshli-Bonderson-Jian-Cheng-Walker, Yonekura-Tachikawa, and

many others]

• We use TQFT as a guide to search for a proper de�nition of partial
transpose for fermions.



Critical point

• The logarithmic negativity for two adjacent intervals of equal length ` at
the critical point (the SSH model).

• The numerical result using the free fermion formula (points) with
L = 40-400 agrees with the CFT result (solid line). [Calabrese-Cardy-Tonni]

E =
c

4
ln tan

π`

L

• Analytical derivation by using the replica method + Fisher-Hartwig.



Monotoncity under LOCC

• For bosonic systems, negativity is LOCC monotone

• I.e., what cannot be generated by LOCC = �quantum entanglement�.

• von-Neumann entanglement entropy decreases monotonically at T = 0,
but not at T > 0.



Monotoncity under LOCC

• We have introduced fermionic version of partial transpose, and negativity,
but is it a good entanglement measure? Is it monotone under LOCC?

• In [Shapourian-SR (18)], we proved that if LOCC are taken to be fermion
number parity preserving. fermionic entanglement negativity is monotone;
a proper entanglement measure.



Application: Fermi surface at �nite T

• Renyi entanglement entropy:

Sn =
n+ 1

6n
C2 · ` ln

∣∣∣∣ βπa0
sinh

π`

β

∣∣∣∣
where C2 =

1

8π

∫
∂Ω

∫
∂Γ

dSkdSx|nx · nk|

• Negativity:

E = C2 ·
`

2

[
ln

(
β

πa0
sinh

π`

β

)
− π`

β

]

• No sudden death



Part II: Negativity in holographic models

• Questions: Is there a geometric/holographic interpretation of negativity?

• C.f. Holographic entanglement entropy formula

• Based on:
• � Entanglement negativity and minimal entanglement wedge cross sections

in holographic theories� arXiv:1808.00446



Holographic code

• A toy model of holography using quantum error correcting code;
[Almheiri-Dong-Harlow (15), Harlow (17)]

|̃i〉 = UA(|i〉A1
⊗ |χ〉A2,Ā

), |χ〉A2,Ā
∈HA2,Ā

.

• This code can correct for the erasure of, e.g., the 3rd �qutrit�,

U†A |̃i〉 = |i〉A1
|χ〉A2Ā

,

• Captures many aspects of holography; black holes, bulk reconstruction,
subregion duality, holographic entanglement entropy, etc.



• E.g., 3-qutrit code: where

|0̃〉 =
1
√

3
(|000〉+ |111〉+ |222〉),

|1̃〉 =
1
√

3
(|012〉+ |120〉+ |201〉),

|2̃〉 =
1
√

3
(|021〉+ |102〉+ |210〉),

|χ〉 ≡
1
√

3
(|00〉+ |11〉+ |22〉).



Holographic entanglement entropy

• Encode input state ρ on HA1

ρ̃ = UA(ρA1
⊗ |χ〉 〈χ|A2,Ā

)U†A.

• Entanglement entropies for ρ̃A = TrĀ ρ̃ and ρ̃Ā = TrA ρ̃:

S(ρ̃A) = S(χA2) + S(ρ̃), S(ρ̃Ā) = S(χA2).

(where χA2 ≡ TrĀ |χ〉 〈χ|A2,Ā
)

• By identifying S(χA2)Icode as the �area operator�, L ,

〈L 〉 = S(χA2) = −
∑
a

pa log pa,

an �holographic formula� for error-correcting codes is obtained.



Perfect tensor network code

• Error correcting code encoding multiple �bulk� logical qubits into multiple
�boundary� physical qubits [Pastawski-Yoshida-Harlow-Preskill(15)]

• Consisting of perfect tensors.



Negativity in holographic error correcting code

• Diagramatic computation:

N (ρ̃) =

(∑
a

√
pa
)2

− 1

2
, E (ρ̃) = log

(∑
a

√
pa
)2

.

• The negativity is equal to 〈L 〉 when χA2 is maximally mixed:

E(ρ̃) = 〈L 〉 = log(|Ã|).



Entanglement wedge

• Negativity is captured by the so-called entanglement wedge [Headrick et al
(14), Ja�eris-Suh (14), Ja�eris-Lewkowycz-Maldacena-Suh (15), ...]
(minimal entanglement wedge cross section).

• Previous work: Entanglement of puri�cation [Takayanagi-Umemoto(17),
Nguyen-Devakul-Halbasch-Zaletel-Swingle (17)]



9-qutrit model

• We have tested out entanglement wedge formula for 9-qutrit model.



AdS 3/CFT 2

• How about negativity in the full �edged AdS/CFT? No time to discuss ...
but rather interesting.

• In holographic code models; many quantities are �degenerate�; mutual
information, negativity, entanglement of puri�cation.

• Back reaction is expected; since, e.g., in certain case, negativity is
Renyi entropy at n = 1/2 [Dong(16)]

• See our paper for more detailed comparisons.



Summary

• Based on the topological �eld theory intuition, we introduced partial
transpose for fermionic systems.

• The (log) negativity using the fermionic partial transpose can capture the
formation of Majorana dimers in the Kitaev chain.

• Partial transpose of fermionic Gaussian states are Gaussian, and hence
easy to compute.

• Entanglement negativity and entanglement wedge cross section


