

#### Long-range collectivity in high-energy collisions and implications to quantum entanglement

#### Wei Li Rice University



Workshop on Quantum Entanglement at Collider Energies CFNS, Stony Brook September 10-12, 2018



#### Long-range collectivity in high-energy collisions and implications to quantum entanglement

#### Wei Li Rice University



Workshop on Quantum Entanglement at Collider Energies CFNS, Stony Brook September 10-12, 2018

### Mystery of quark confinement



### Mystery of quark confinement



### Mystery of quark confinement



Liberated quarks/gluons at high T (weakly coupled)?

# Creating the QGP



 $\gamma \sim 100 - 2000$ 

Too small, dilute!

**Proton-proton** 

Total colliding energy: ~10<sup>6</sup> GeV

## High-energy heavy ion colliders



**x25** 

Long Island, NY

2000 -

- pp, pAu, dAu, He<sup>3</sup>Au, CuCu, CuAu, AuAu, UU, ...
- $\sqrt{s_{NN}} \sim 0.007 0.2 \,\text{TeV}$

Geneva, Switzerland

2010 -

- pp, PbPb, pPb, XeXe, ...
- $\sqrt{s_{NN}} \sim 5 8 \text{ TeV}$

### Space-time evolution of a heavy ion collision





CMS Experiment at LHC, CERN Data recorded: Mon Nov 8 11:30:53 2010 CEST Run/Event: 150431 / 630470 Lumi section: 173

P

Central PbPb at 2.76 TeV

~ 20,000 particles!



RN

:30:53 2010 CEST

P

High - Energy Collisions at 7 TeV LHC @ CERN 30.03.2010

> Central PbPb at 2.76 TeV

~ 20,000 particles!

#### RHIC Scientists Serve Up 'Perfect' Liquid instead of a gas!?

New state of matter more remarkable than predicted — raising many new questions

Monday, April 18, 2005

| ANTICANCER BLOCKBUSTER? • RISE AND FALL OF THE SLIDE RULE                             |                                      |
|---------------------------------------------------------------------------------------|--------------------------------------|
| SCIENTIFIC<br>AMERICAN                                                                | Bringing<br>DNA Computers<br>to Life |
| Quark Sour<br>Physicists re-create<br>the liquid stuff of<br>the earliest<br>universe |                                      |
| Stopping<br>Alzheimer's                                                               |                                      |
| the Amazon<br>Future                                                                  | - Josef -                            |
| Giant Telescopes                                                                      |                                      |

Reaffirmed later by LHC experiments

#### Particle correlations and QGP fluidity



### Particle correlations and QGP fluidity

 $\eta = -\ln(\tan(\theta/2))$ 





Azimuthal correlations over wide rapidities (>4-5 units)



Azimuthal correlations over wide rapidities (>4-5 units)



Azimuthal correlations over wide rapidities (>4-5 units)



Azimuthal correlations over wide rapidities (>4-5 units)

At large rapidity gap, particles causally disconnected Ț<sub>ch</sub> Ț<sub>c</sub> Freeze-Out Hadron Gas  $\tau_0$ £ 1 fm/c Correlation at very early time  $\tau_{o} \leq \tau_{F.O.} \exp\left(-\frac{1}{2}|y_{a} - y_{b}|\right) \sim 0.1 \text{ fm}$ A. Dumitru et. al., Nucl. Phys. A 810 (2008) 91



Azimuthal correlations over wide rapidities (>4-5 units)



"Elliptic flow"  $1 + 2(v_2)^2 \cos 2\Delta \phi$ 



#### "Hot" QCD matter

MB pp 7 TeV  $(N_{trk} \sim 15)$ CMS  $\mathcal{D}_{\mathcal{U}}$ -2

"Cold" QCD matter – no QGP in pp/pA



"Hot" QCD matter

"Cold" QCD matter – no QGP in pp/pA

#### Particle species dep. of $v_2$ Thermal-like $p_T$ spectra Pb-Pb $\sqrt{s_{NN}} = 2.76$ TeV 20-40% PRC 88, 044910 (2013) v<sub>2</sub>{SP, I∆ղI>1} 0.25 🔳 π ALICE PO-PONS, +2.76 TeV ■ K STAR AU AUNS # 200 GEV \_ 🗖 🗖 0.2 0 <sup>℃</sup> Ο 201001 0.1 VISH2+1 (CGC, n/s=0.2) 10 KHAROW 0.05 0-5% Central cellsions EROS AIP Conf. Proc. 1441, 766 ALICE PRELIMINARY PRC84 044903 3 4 6 1.5 2.5 3 3.5 0.5 2 *p*\_ (GeV/c) p<sub>T</sub> (GeV/c)

#### Data well described by nearly ideal hydrodynamics





Correlations mostly seeded by fluctuations of nucleons



Correlations mostly seeded by fluctuations of *nucleons* 

 $\eta$ /s approaches conjected quantum lower limit

 $\eta/s \gtrsim 1/(4\pi) \sim 0.08$ 

Kovtun, Son, Starinets PRL 94 (2005) 111601

### Discovery Phase II: <u>"Ridge" in pp (2010)</u>



High-multiplicity pp  $(N_{trk} \ge 110)$ 



O(10<sup>-6</sup>) most violent events

### Discovery Phase II: <u>"Ridge" in pp (2010)</u>



High-multiplicity pp  $(N_{trk} \ge 110)$ 



O(10<sup>-6</sup>) most violent events

# Discovery Phase II: <u>"Ridge" in pp (2010)</u>



High-multiplicity pp  $(N_{trk} \ge 110)$ 



O(10<sup>-6</sup>) most violent events

QGP droplet at sub-fermi scales? Or <u>NO</u> QGP after all? — Beginning of a new paradigm!

#### Proton-lead collisions at the LHC



Striking "Ridge" signal in pPb!









#### "Flow" in small systems

PRL 120 (2018) 092301



Flow-like behavior similar across all systems

#### "Flow" in small systems



Similar features for pPb and PbPb

(all entities follow a common behavior)



 $c_2\{2\} \sim (v_2\{2\})^2$ 

(all entities follow a common behavior)

#### Multiparticle correlations (cumulants)



 $c_2\{2\} \sim (v_2\{2\})^2$  $c_2\{4\} \sim (v_2\{4\})^4$ 

6

(all entities follow a common behavior)

Multiparticle correlations (cumulants)



 $c_{2}\{2\} \sim (v_{2}\{2\})^{2}$   $c_{2}\{4\} \sim (v_{2}\{4\})^{4}$   $c_{2}\{6\} \sim (v_{2}\{6\})^{6}$ 

# <u>Collective</u> or NOT? (all entities follow a common behavior) Multiparticle correlations (cumulants)

6



 $c_{2}\{2\} \sim (v_{2}\{2\})^{2}$   $c_{2}\{4\} \sim (v_{2}\{4\})^{4}$   $c_{2}\{6\} \sim (v_{2}\{6\})^{6}$   $c_{2}\{8\} \sim (v_{2}\{8\})^{8}$ 

(all entities follow a common behavior)

Multiparticle correlations (cumulants)



 $c_{2}\{2\} \sim (v_{2}\{2\})^{2}$   $c_{2}\{4\} \sim (v_{2}\{4\})^{4}$   $c_{2}\{6\} \sim (v_{2}\{6\})^{6}$   $c_{2}\{8\} \sim (v_{2}\{8\})^{8}$ 

Collectivity:  $v_2{4} \approx v_2{6} \approx v_2{8} \approx ... \approx v_2{\infty}$ 

# Collectivity

#### Multiparticle correlations



Direct evidence for

Long-range collective particle correlations



# Hydrodynamics in pA and pp!



Opportunity of probing quantum fluctuations at sub-fermi and yoctosec scales!

### Small System Scans at RHIC



Consistent with hydrodynamics driven by initial geometry

# Maybe an alternative origin of the "Ridge"

Before the collision,

Gluon interference (a.k.a., CGC) "Momentum Domains" Or Color Electric Fields



Lappi, Schenke, Schlichting, Venugopalan JHEP 01 (2016) 061

# Maybe an alternative origin of the "Ridge"

Before the collision,

Gluon interference (a.k.a., CGC) "Momentum Domains" Or Color Electric Fields



Lappi, Schenke, Schlichting, Venugopalan JHEP 01 (2016) 061

> Non-Geometry related

"Born to flow" (at t=0)

> No *final-stage* interactions as for Hydro.

Subdominant in large (than domain size) systems but highly relevant in small systems (pp, pA, etc.)

#### Saturation, the Color Glass Condensate and Glasma: What Have we Learned from RHIC?

RIKEN BNL Research Center Workshop May 10-12, 2010 at Brookhaven National Laboratory



#### Ridge pure final-state effect or is it there in pp @ LHC ?

# genuine B-JIMWLK terms from THIS diagram:



B-JIMWLK four-point function (in Gaussian approximation), incl. "Nc corrections":

$$\langle \rho^{a} \rho^{b} \rho^{c} \rho^{d} \rangle = \delta^{ab} \delta^{cd} \langle \rho^{2} \rangle^{2} + \frac{1}{N_{c}} f^{abe} f^{cde} \mathcal{F}(k_{i}) \langle \rho^{2} \rangle^{2} + \cdots$$
A.D., J. Jalilian-Marian,  
arXiv:1001.4820

★ ridge in pp @ LHC ?!

Adrian Dumitru

#### Maybe an alternative origin of the "Ridge"



#### $v_2$ , $v_3$ in pAu, dAu, He<sup>3</sup>Au at RHIC from CGC



Where do we stand?



Where do we stand? Early-time origin(s)



Importance to understand the proton

#### Heavy quarks as massive probes



m<sub>c,b</sub> >> T<sub>QGP</sub>: mainly from initial scattering, decoupled from the QGP medium



Do heavy quarks flow? (charm, bottom)

#### Heavy quarks as massive probes



### Heavy quarks as massive probes



(Surprisingly!?) strong collective signal for **charm** Future: detailed studies of **c** and **b** in pp and pPb Theoretical inputs needed! (e.g.,  $B \rightarrow D$ )

### An alternative view of the proton

Features of "thermalization" seen in pp, e+e-, etc from quantum entanglement? D. Kharzeev, E. Levin, PRD 95 (2017) 114008

Proton (or any hadron): a color singlet, pure quantum state

$$|\Psi_{AB}\rangle = \sum_{n} \alpha_{n} |\Psi_{n}^{A}\rangle |\Psi_{n}^{B}\rangle - \text{entangled}!$$



### An alternative view of the proton

Features of "thermalization" seen in pp, e+e-, etc from quantum entanglement? D. Kharzeev, E. Levin, PRD 95 (2017) 114008

Proton (or any hadron): a color singlet, pure quantum state

$$|\Psi_{AB}\rangle = \sum_{n} \alpha_{n} |\Psi_{n}^{A}\rangle |\Psi_{n}^{B}\rangle - \text{entangled}$$



"Thermal" distributions after quench (collision)
"Born to thermalize" (at t~0) – same physics as CGC?

#### An alternative view of the proton

Features of "thermalization" seen in pp, e+e-, etc from quantum entanglement? D. Kharzeev, E. Levin, PRD 95 (2017) 114008

Proton (or any hadron): a color singlet, pure quantum state

$$|\Psi_{AB}\rangle = \sum_{n} \alpha_{n} |\Psi_{n}^{A}\rangle |\Psi_{n}^{B}\rangle - \text{entangled}$$



"Thermal" distributions after quench (collision)
"Born to thermalize" (at t~0) – same physics as CGC?
Azimuthal correlations from n-parton states?

#### Quantum thermalization through entanglement in an isolated many-body system

A. M. Kaufman et al, Science 353 (2016) 794



# Electron-Ion Collider (EIC)

#### Detailed imaging of p/A (cold QCD matter)

✓ "Hot QCD matter" in e+A?





Typical e+A High-multiplicity e+A =  $(\overline{qq})$ +A?  $\downarrow_{e^{-}}^{e^{-}}$ 

Fluctuations of "photon size" Multiplicity fluctuation Alvioli et. al. Phys. Lett. B767 (2017) 450-457 10 • π<sup>+</sup>(30GeV)+Au (100GeV) ----  $P_{\gamma}^{\text{dipole}}, m_{q} = 0 - 350 \text{ MeV}$ • π<sup>+</sup>(20GeV)+Au (100GeV) 10-• π<sup>+</sup>(10GeV)+Au (100GeV)  $10^{-2}$  $P_{(\rho+\omega+\phi)/\gamma}$  $P_{\gamma}\left(\sigma\right)\left[mb^{^{-1}}\right]$  $10^{-2}$ P<sup>hybrid</sup> AMPT  $P(N_{trk})$ 10<sup>-3</sup> 10<sup>-3</sup>  $10^{-4}$ 10  $W_{vD} = 100 \text{ GeV}$  $10^{-5}$ 10<sup>-5</sup> 20 30 40 50 60  $\sigma$  [mb] **Small dipoles Vector mesons**  $10^{-6}$ 140 160 180 200 20 120  $N_{trk}$  (full phase space) 



"Ridge" and "thermal" features should be observable at EIC in high-multiplicity e+Au events!

# Summary

Remarkable long-range collectivity observed across all hadronic collision systems (pp/pA/AA)

Physics origin in small systems still under intense debate (CGC vs Hydro.) but a lot of progress made

Understanding the proton is the key

• role of quantum interference or entanglement?

#### e+A has a $(q\bar{q})$ +A component

- A "ridge" should be observable at high multiplicities
- New insights to our understanding of the "ridge"

# Acknowledgement



#### Office of Science



#### Alfred P. Sloan FOUNDATION



Backups





N<sub>trk</sub>(minimum bias)

- pp: ~ 15
- pPb: ~ 40

*π*<sup>+</sup>(30GeV)+*Au*(100GeV) from AMPT



A long-range ridge can be observed at EIC in high-multiplicity e+Au events!

Comparing  $v_n$  in (qqq)+A vs (qq)+A



- Disentangle "hydro" vs CGC?
- Insight on subnucleonic fluctuations?

V.S.

#### **Experimental requirements**





