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Motivations and Disclaimers:

• How does the pure state in the r.f. evolves to the set of ‘quasi free’ patrons in the
IMF?

2

IMF

parton 

model

Wave function of partons Amplitude of interaction

M. Martinelli:“ Photons, Bits and Entropy: From Planck to Shannon at the Roots of the Information Age”,

Entropy,19, 347 (2017)

• What is the rigorous definition of ‘quasi free’ parton distribution?
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• In DIS we measure a tube of radius 1/Q2 and longitudinal size 1/(mx) (region
A):

Lc

lci

lcompt

In DIS we can measure ρA = trBρ.

• Is there an EE SE = −tr[ρA ln ρA] associated with DIS experiment?

• If yes how does it relates to the pdf?

• PDF versus multiplicity in DIS?

• What we need to use instead of patrons deep in the saturation region?
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Do not expect:

• A thorough knowledge of EE
C. Holzhey, F. Larsen and F. Wilczek, Nucl. Phys. B 424 (1994) 443, [hep-th/9403108];

P. Calabrese and J. L. Cardy, Int. J. Quant. Inf. 4 (2006) 429, [quant-ph/0505193].

• A rigorous answer to every questions.

• A list of prediction for DIS deep in the saturation region.

The paper (and this talk) is an attempt
to give the answers to all above questions,
based on simple calculations and the observed
similarities between CFT and the parton
cascade if we discuss it in terms of entropy.

Follow the example of Max Planck,
we look at DIS from the point
of ENTROPY
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Ideas and results (1) :

• In toy (1+1) dimensional model as well as in the full QCD cascade
we computed von Neumann entropy S(x);

• We found that S(x) = ln
(
xG

(
x,Q2

) )
where xG(x,Q2) is the multiplicity of partons(gluons);

• This equation implies that all microstates of the system are equally
probable and S is maximal;

• This equipartitioning of microscopic states that maximizes the von
Neumann entropy corresponds to the parton saturation;

• S diverges logarithmically at x → 0; S(x) = ∆ ln
(

1
x

)
= ∆ ln

(
L
ε

)
with L = 1/(mx) and ε = 1/m ← proton’s Compton wave length,
∆ is the BFKL intercept ∆ = 2.8ᾱS;
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Ideas and results (2) :

• Reminds the expression for EE in (1+1) CFT: S(x) = c
3

ln L
ε

• We argue that this agreement is not coincidental, and propose that
the parton distributions, and the entropy associated with them, arise
from the entanglement between the spatial domain probed by DIS and
the rest of the target;

• The maximal value of the entanglement entropy attained at small x
implies that the corresponding partonic state is maximally entangled;

• Unlike the parton distribution, the EE is an appropriate observable
even at strong coupling when the description in terms of quasi-free
partons fails.
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QM of parton entanglement, as I understood it

A is the region that we measure in DIS, The physical sates are in
HA

ilbert space(nA).

B is a complementary region, unobserved state ∈HB(nB)

the entire space: A∩B. the composite system in HA⊗HB

|ΨAB〉 =
∑
ij

cij|φAi 〉⊗|φ
B
j 〉; matrix C has nA×nB dimension

If y∈A and z ∈B the density matrix:

ρ (y, z, y′, z′) = ΨAB (y, z) Ψ∗AB (y, z′) ← pure state with S=0.

ρA (y, y′) =

∫
dz ρ (y, z, y′, z) ≡ trBρAB
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Schmidt decomposition theorem:

|ΨAB〉=
∑
n

αn|ΨA
n〉|Ψ

B
n 〉

where αn=
√
CC†.

• • • ρA = trB ρAB =
∑
n

α2
n |Ψ

A
n 〉〈Ψ

A
n | • • •

where α2
n ≡ pn← the probability of a state with n partons.

• • • Svon Neumann = −
∑
n

pn ln pn • • •

S ≡ Shannon entropy (EE) for probability distribution {p1, p2, . . . , pn}
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Good Old Parton model in new framework:

Balitsky-Kovchegov cascade for dipoles with fixed sizes (1+1 toy model)

BFKL Pomeron:

•
dσ (Y )

dY
= ∆σ (Y ) where ∆ = 2.8 ᾱS

P (Y)n P     (Y)n−1
Y 

Y + dYn

•
dPn (Y )

dY
= −∆nPn (Y )︸ ︷︷ ︸

depletion of the probability

+ (n− 1) ∆Pn−1 (Y )︸ ︷︷ ︸
growth due to splitting

Generating function:

Z (Y, u) =
∑
n Pn (Y ) un, with Z (Y = 0, u) = u; Z (Y, u = 1) = 1
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Equation:

• ∂Z(Y,u)
∂Y = −∆u (1− u) ∂Z(Y,u)

∂u

Z(u(Y ))
−−−−→ ∂ Z

∂ Y = −∆
(
Z − Z2

)
For scattering amplitude

N (Y ; γ) = 1− Z (Y, 1− γ) −→ dN (Y ) /dY = ∆
(
N −N2

)
Solution:

• Z (Y, u) = u e−∆Y

1 + u (e−∆Y − 1)
= u e−∆Y ∑∞

n=1 u
n
(
1 − e−∆Y

)n
• Pn (Y ) = e−∆Y

(
1 − e−∆Y

)n−1

Gluon sructure function:

xG (x) = 〈n〉 =
∑
n

nPn (Y ) = u
dZ (Y, u)

du

∣∣∣∣∣
u=1

= e∆Y =

(
1

x

)∆
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Entropy: Svon Neumann = −
∑
n pn ln(pn) = −

∑
nPn (Y ) ln(Pn (Y ))

S = −
∑
n e
−∆Y

(
1 − e−∆Y

)n−1
(
− ln

(
e∆Y − 1

)
+ n ln

(
1− e−∆Y

) )
= ln

(
e∆Y − 1

)
Z (Y, u = 1) + ln

(
1

1−e−∆Y

)
u∂Z(Y, u)

∂u

∣∣∣∣∣
u=1

= ln
(
e∆Y − 1

)
+ e∆Y ln

(
1

1−e−∆Y

)
∆Y�1−−−→ ∆Y = ∆ ln

(
1
x

)

Sv.N. −→


ln (xG(x)) if ∆Y�1

− ln
[
xG(x)−xG(x=x0)

xG(x=x0)

] [
xG(x)−xG(x=x0)

xG(x=x0)

]
if ∆Y�1
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Multiplicity distributions: (Ñ = ñ− 1)

Pn (Y ) = e−∆Y
(
1 − e−∆Y

)n−1
= 1

n̄

(
n̄−1
n̄

)n−1
= 1

N̄

(
N̄
N̄+1

)n
Negative binomial distribution:

σn
σin

= P NBD (r, n̄, n) =
(

r
r+〈n〉

)r
Γ(n+r)
n! Γ(r)

(
〈n〉

r+ 〈n〉

)n

•
σn

σin
=
n̄− 1

n̄
PNBD (1, n̄− 1, n)

with r = 1(number of failures) and p = N̄/
(
N̄ + 1

)
= 1 − 1/n̄(probability of success)

Cumulants: Cq = < nq > / < n >q =
(
u d
du

)q
Z (Y, u)

∣∣∣∣∣
u=1

C2 = 2− 1/n̄; C3 =
6(n̄− 1)n̄ + 1

n̄2
;

C4 =
(12n̄(n̄− 1) + 1)(2n̄− 1)

n̄3
; C5 =

(n̄− 1)(120n̄2(n̄− 1) + 30n̄) + 1

n̄4
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Predictions: C2 ' 1.83, C3 ' 5, C4 ' 18.2 and C5 ' 83

for experimental n̄ = 6.33(CMS) for |η| ≤ 0.5 at W=7 TeV.

Experiment(CMS): Cexp
2 = 2.0± 0.05, Cexp

3 = 5.9± 0.6,

Cexp
4 = 21± 2, and Cexp

5 = 90± 19

proton

proton

Y

Y/2
detectors

Predictions ( n̄→∞) : C2 ' 2, C3 ' 6, C4 ' 24 and C5 ' 120
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EE from the (3 + 1) dimensional Balitsky-Kovchegov equation:

∂ Pn (Y ; r1, r2 . . . ri . . . rn)

ᾱs ∂ (Y )
= −

n∑
i=1

ω(ri)Pn (Y ; r1, r2 . . . ri . . . rn)

+

n−1∑
i=1

(~ri + ~rn)2

(2π) r2
i
r2
n

Pn−1
(
Y ; r1, r2 . . . (~ri + ~rn) . . . rn−1

)
Probability for one dipole to survive depends on the dipole size:

• ᾱS ω(ri) ≡ ᾱSωi =
ᾱS

2π

∫
ρ

r2
i

(~ri − ~r′)2 r′2
d

2
r
′

= ᾱS ln(r
2
i/ρ

2
)

The probability for a decay |~r1 + ~r2| → r1+r2: • K (r1, r2|~r1 + ~r2) =
ᾱS
2π

( ~r1 + ~r2)2

r2
1 r

2
2

•
∞∑
n=1

∫ n∏
i=1

d2riPn (Y ; {ri}) = 1

i.e. the sum of all probabilities is equal to 1.
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• For n = 1 equation has the solution

P1 (Y ; r1) = δ (~r − ~r1) e
−ᾱSω(r1)Y

• Pn (Y ; {ri}) =⇒ Pn (ω; {ri})( Mellin image)

• Pn (Y ; {ri}) =

∫ ε+i∞

ε−i∞

dω

2π
e
ω ᾱS Y Pn (ω; {ri})

• ω Pn (ω; {ri}) =

−
n∑
i=1

ωi Pn (ω; {ri}) +
1

2π

n−1∑
j=1

(~rj + ~rn)2

r2
j r

2
n

Pn−1 (ω; {ri, ~rj → (~rj + ~rn)})

• Pn (ω; {ri}) = 2π r2 δ (~r − ~r1)

(
1

2π

)n n∏
i=1

1

r2
i

Ωn (ω, {ωi})

• Ωn (ω, {ωi}) =−
(

n∑
i=1

ωi

)
Ωn (ω, {ωi}) +

n−1∑
j=1

Ωn−1 (ω, {ωi, ωjn})
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Recurrent equation:

• Ωn (ω, {ωi}) = (n− 1) Ωn−1 (ω, {ωi, ωn−1,n})
1

ω +
∑n
j=1 ωj

;

ωi = ω (~ri) and ωij = ω (~ri + ~rj).

Failed to solve in a general case but

• Large dipole −→ one large + one small dipoles.

|~ri + ~rn| → ri while rn � ri.

• Summation lnn
(
r2
iQ

2
s

)
for r2

iQ
2
s � 1;

• Ωn (ω, {ωi}) = (n− 1)!

n∏
j=1

1

ω +
∑j
l=1

ωl
= (n− 1)!

n∏
j=1

1

ω +
∑j
l=1

zl

• Pn (Y ; {ri}) = 2π r
2
δ (~r − ~r1)

(
1

2π

)n n∏
i=1

1

r2
i

∫ ε+i∞

ε−i∞

dω

2π
e
ω ᾱS Y Ωn (ω, {ωi})

•
∫ n∏
i=1

d
2
ri Pn (Y ; {ri}) =

∫ ε+i∞

ε−i∞

dω

2π
e
ω ᾱS Y

∫ n∏
i=1

dzi Ωn (ω, {zi})
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• •
∫ ε+i∞
ε−i∞

dω

2π
e
ω ᾱS Y Ωn

(
ω, {zi}

)

=
(
ᾱSY

)n ∫ 1

0

n∏
i=2

dαi exp

{
−

z1 + z2

n∑
i=2

αi + z3

n∑
i=3

αi + . . . + zl

n∑
i=l

αi + . . . + znαn

 ᾱS Y
}

=
(
ᾱSY

)n ∫ 1

0

n∏
i=2

dαi exp

{
−

z1 + αn

n∑
i=2

zi + αn−1

n∑
i=3

zi + . . . + αl

n∑
i=l

zi + . . . + znαn

 ᾱS Y
}

= e
−ᾱS z1 Y

n∏
i=2

1− e
−
(∑n

l=i zl

)
ᾱS Y∑n

l=i zl

 ≡ (
ᾱS Y

)n
e
−ᾱS z1 Y

n∏
i=2

Φ

ᾱSY n∑
l=i

zl



•
∫ n∏
i=1

dzi Pn
(
Y ; {zi}

)
=

e
−ᾱS z1 Y

∫ ᾱS z1 Y

0
Φ (tn) dtn

∫ tn
0

dtn−1 Φ
(
tn−1

)
. . .

∫ t3
0

dt2 Φ (t2) =
1

n!
Ξ
n (
ᾱS z1 Y

)
e
−ᾱS z1 Y

where ti = ᾱSY
∑n
l=i zl and

Ξ (t) =

∫ t
0

Φ
(
t
′)
dt
′

=C + Γ (0, t) + ln t

Ξ (t) =

{
t if t� 1;

ln (1/t) if t� 1.

z1 � z2 � . . . � zi � zi−1 � . . . � 0
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Gibbs formula:

S = −
∞∑
n=1

n∏
i=1

∫
d2riPn (Y ; {ri}) ln

(
Pn (Y ; {ri})

)

For Y�1:

S = ω(r)ᾱSY

∞∑
n=1

∫ n∏
i=1

d
2
ri Pn (Y − y; {ri})︸ ︷︷ ︸
= 1

− e
−ᾱSz1Y

∞∑
n=1

∫ n∏
i=2

dzi

{ n∑
i=2

zi −
n∑
i=2

ln

 n∑
l=i

zl

} n∏
i=2

1− e−
(∑n

l=i zl

)
ᾱS Y∑n

l=i zl


︸ ︷︷ ︸

� 1
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First term in Eq.49

Second term in Eq.49

0 2 4 6 8 10
0

2

4

6

8

10

ΑS Ξ Y

S

S= ᾱS ξ︸ ︷︷ ︸
Zamolodchikov, JETP letters, 43,565(1986)

Y

DIS as a probe of entanglement E. Levin 19



Once more: results (discussion)

A1: The entropy originates from the entanglement between the spatial domain

probed by DIS and the rest of the target, whereas the entire proton is in a pure quantum

state with zero entropy.

A2: Parton distributions have a well-defined meaning only for weakly coupled

partons at large momentum transfer Q2 – but the entanglement entropy is a universal

concept that applies to states at any value of the coupling constant.

A3: Unlike the parton distributions, the entanglement entropy is subject to strict

bounds – for example, if the small x regime is described by a CFT, the growth of parton

distributions should be bounded by xG(x) ≤ const x−1/3.

A4: If the second law of thermodynamics applies to entanglement entropy then the

entropy of a final hadronic state cannot be smaller than the entropy S(x) accessed at a

given Bjorken x. The correspondence between the number of partons in the initial state

and the number of hadrons in the final state is in accord with the “parton liberation”

and “local parton-hadron duality” pictures.
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1. The entropy is a useful measure of information that can be
obtained in an experiment.
2. The entropic approach underlines the importance of
measuring the hadronic final state of DIS.
3. We encourage experimentalists to combine the
measurements of the DIS cross sections with the determination
of hadronic final state at the future facilities.
4. The determination of the Shannon entropy of hadrons in
the final state of DIS can be done using the event-by-event
multiplicity measurements.
5. The “asymptotic” small x regime in which our formula
begins at x ≤ 10−3. It is accessible to the current and planned
experiments, and can be investigated at the future Electron-Ion
Collider (EIC).
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