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Entropy of a Subsystem

Sclass = �
X

n

pn log pn

Here pn are probabilities. In classical case if the entropy is zero
than all pn = 0 exept of one, which is equal to 1. If the total
entropy is 0 than there is no entropy in any subsystem.
Not so in quantum case. There can be entropy in a subsystem,
also the total entropy is 0. More entropy in a subsystem [keeping
total entropy equal to 0] stronger quantum fluctuations are.



Growth

Infinite chain with local interaction and unique ground state.
How fast the entropy of a block of spins can grow with the length
of the block?
Gapped models: area law Srednicki 1993.

Many gapp-less models: logarithmic growth
C.Holzhey, F.Larsen, F.Wilczek , 1994
consistent with CFT

Can entanglement entropy grow faster for a Hamiltonian with local
interaction?



Overview of Fredkin model

I A chain of interacting half integer spins: (k � 1/2). Integer k
will appear as number of colors.

I Locality: spins in three nearest lattice sites interact.

I Density of the Hamiltonian minimizes at each lattice site.
Frustration free.

I The ground state of the model is described by random walk
on upper half plane of a square lattice.



Notations

I For a chain of even length N, the Hilbert total space is a
tensor product W ⌦W ⌦W ⌦ ....⌦W of the local Hilbert
spaces at the di↵erent sites. Simplest case k = 1 (spin 1/2 )
dimW = 2.

I We will write the Hamiltonian as a sum of local operators Hj

[density of the Hamiltonian]. The subscript indicates a lattice
site, where the Hj actes non-trivially:
1⌦ 1...⌦ 1⌦ H̃ ⌦ 1⌦ ...⌦ 1 : we have (j-1) factors of 1
before H̃.

I The Pauli matrices are given by:

�x =

✓
0 1
1 0

◆
,�y =

✓
0 �i
i 0

◆
,�z =

✓
1 0
0 �1

◆

~�j · ~�j+1 = �x
j �

x
j+1 + �y

j �
y
j+1 + �z

j �
z
j+1 =

1

2
(1 + ⇧i ,i+1)



Hamiltonian for spins 1/2

Hbulk =
NX

j=1

(1 + �z
j )(1� ~�j+1 · ~�j+2) +

�
1� ~�j · ~�j+1)(1� �z

j+2

�

I Can be rewritten in terms of Fredkin gate Fijk : it permutes
sites j and k if site i is in state |"ii . Nothing happen to the
sites j and k if site i is in state |#ii .

Hbulk =
NX

j=1

1� Fj ,j+1,j+2 + 1� �x
j+2 (Fj+2,j+1,j)�

x
j+2

I We add local magnetic field at the boundary

H@ = |#1i h#1|+ |"Ni h"N |

It make the ground state unique.



Historical remark

About 50 years ago computer scientists discussed: how much
energy is necessary for computation? Rolf Landauer discovered
that the energy has to be spent only for cleaning the database:
kT log 2 per bit.
Tommasso To↵oli and Edward Fredkin suggested reversible
computation based of 3-bit operations. Fredkin gate was
introduced in 1982. See
Richard Feynman: Lectures on Computation
Wikipedia



Properties of the Hamiltonian

Hbulk =
NX

j=1

(1 + �z
j )(1� ~�j+1 · ~�j+2) + (1� ~�j · ~�j+1)(1� �z

j+2)

I The Hamiltonian is unfrustrated: each local term vanishes
(minimizes) at the ground state.

I The Hamiltonian is invariant under joint reflection:
j ! N � j and Sz ! �Sz

I The Hamiltonian commutes with third component of total
spin:

P
j �z

I Each term in the Hamiltonian is positive semidefinite.



Spin states as paths
I Identify basis states with paths on an integer lattice assigning

spin up to a step up and spin down to a step down,
|"#"i = |/\/i,|#"#i = |\/\i.

I The map defines a path uniquely up to a constant shifting of
the height axis, we set the height of the lowest point of the
path to zero.

*2.5*2.5

Figure 1: Caption goes here.



Defining an equivalence relation on paths
I Let us define a local equivalence relation on paths. We say

that two paths are equivalent if they are related by a sequence
of the Fredkin moves below.

I The equivalence relation allows us to move a /\ peak to any
point in the path.

I The moves conserve endpoints of the path.
I The ground state will be invariant under Fredkin moves.
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Figure 3: Caption goes here.



Rewrite the Hamiltonian
I We rewrite the Hamiltonian in terms of projectors

*1.1*1.1

H  =

+

i

Figure 2: Caption goes here.



Equivalence relation on paths
I We can move a /\ peak to any point in the path.
I The moves preserves the endpoints of the path.
I If we repeatedly move the last peak of the path to the

beginning, the process will converge to a sequence of /\ peaks
followed by a single dip with no peaks.

I Any two paths with the same endpoints will be mapped to the
same path after N/2 steps.

I The equivalence classes are fully characterized by the heights
of the path endpoints. We call them Ca,b(N), where a and b
are the heights of the first and last endpoints.
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Figure 4: Caption goes here.



Choosing the ground state
I For equivalence class of paths Ca,b(N), we define the Dyck

state |Ca,b(N)i as the symmetric sum [equal coeficients] of all
basis states corresponding to the paths in Ca,b(N).

I The states |Ca,b(N)i are ground states of all terms in the bulk
Hamiltonian.

I The state |C0,0(N)i = |C (N)i which we call the Dyck state is
of particular interest: it is the only bulk ground state which is
also a ground state of the boundary part of teh Hamiltonian:
H@ = |#1i h#1|+ |"Ni h"N |.

I |C (N)i is the superposition of all Dyck paths (paths which
never go below of their endpoints). These are counted by the
famous Catalan numbers CN =

QN
l=2

N+l
l

I The ground state is invariant under Fredkin moves.
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Figure 5: Caption goes here.



The Schmidt coe�cient= entanglement spectrum

I The ground state |C (N)i has a Schmidt decompositionP
m
p
pm |C0,m(L)i ⌦ |Cm,0(N � L)i for a block of lenght L.

I The Schmidt coe�cients in our case are given by

pm = |C0,m(L)||C0,m(N�L)|
C(N) .

I Here

|Ca,b(L)| =
✓

L
L+a+b

2

◆
�
✓

L
L+a+b

2 + 1

◆

I The Schmidt rank, is the number of nonzero Schmidt
coe�cients: in our case is

⌅
L
2

⇧
.

I The entanglement entropy is S = �
P

m pmLog(pm).



Entanglement entropy for spin 1/2 is boring

I Using Stirling’s we get for N = 2n, L = 2l, m=2h

pm ⇡ h2

Z
exp (�h2[

1

l
+

1

n � l
]),

X

m

pm = 1

I Entanglement entropy is:

S ⇡ 1

2
Log(L) + O(C )

Constant term is around 0.437



Generalization to higher spins: colored Dyck walks

I For spin 3/2, we have to consider colored paths: red, blue.

I For 3/2, we can identify m = 3/2 with a red up step, m =
1/2 with a blue up step, m = - 1/2 with a blue down step,
and m = -3/2 with a red down step.

I To analyze colored paths, we need to mention matched steps.



Spin 3/2 and up: colorings and matchings
I Up step and a down step are matched if the the up step is of

the form (i , j) ! (i + 1, j + 1) and the down step is the first
down step occurring after our up step which is of the form
(i 0, j + 1) ! (i 0 + 1, j) [same height]. Equivalently, two steps
are matched if the subpath between them is a Dyck path.

I Matched steps should have the same color.

*4.5*4.5

Figure 6: Caption goes here.



Fredkin moves, coloring rules
I Fredkin moves will move peaks along with their colors.
I We introduce the coloring rules, which allow us to recolor

matched peaks and forbid matched pairs from having di↵erent
colors.

I The ground state will be invariant under Fredkin moves.
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Figure 7: Caption goes here.



Moving colores
I The colored Fredkin moves allow us to reduce any path with

colored steps to one where all matched steps are adjacent to
their match. The coloring rules can then be applied to recolor
matched pairs or to exclude invalid path colorings.

I This allows us to define equivalence classes of colored paths
which are defined only by their endpoints, and the colors of
the unmatched steps to their left and right.
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Figure 8: Caption goes here.



Hamiltonian for spin 3/2 and higher

I These rules can be implemented by the following
SU(k)-invariant Hamiltonian of the form H = HF + HX + H@ .

I HF implements Fredkin moves. It can be expressed in terms
of operators P+

j , P�
j which project onto up/down steps

disregarding the colors, and the cyclic permutation operators
Ci ,j ,k :

HF =
N�2X

j=1

P+
j P+

j+1P
�
j+2 + P+

j P�
j+1P

+
j+2�

�P+
j P+

j+1P
�
j+2Cj ,j+1,j+2 � C †

j ,j+1,j+2P
+
j P+

j+1P
�
j+2+

+P+
j P�

j+1P
�
j+2 + P�

j P+
j+1P

�
j+2�

�P+
j P�

j+1P
�
j+2C

†
j ,j+1,j+2 � Cj ,j+1,j+2P

+
j P�

j+1P
�
j+2



The Hamiltonian

I The matching term HX , is defined using local SU(k)
generators T a

j acting on the color space. Up steps lie in the
fundamental representation of SU(k), while down step colors
lie in its conjugate repesentation.

I The color matching then simply corresponds to projecting the
colors of matched pairs onto SU(k) singlets.

I The Hamiltonian is symmetric under SU(k), it commutes with
generators T a =

P
j T

a
j

HX =
N�1X

j=1

P+
j P�

j+1

"
X

a

(T a
j + T a

j+1)
2

#

H@ =P�
1 + P+

N



Ground state for spin 3/2 and higher

I The ground state is the symmetric sum [equal coeficients] of
all the proper colorings of all the Dyck paths



Schmidt decomposition

I The Schmidt coe�cients in colored case are closely related to
the spin 1/2 case for the block of size L.

I It looks like
P

m,c
p
qm,c |C0,?,m,c(L)i ⌦ |Cm,c,0,?(N � L)i

where c is a string of k-bits (k is the number of colors)
representing all possible colorings of the unmatched steps in
the left and right blocks.

I we have qm,c = kmpm which is independent of c.



Spin 3/2 and up: Entanglement entropy

I The entropy can simply be written as
�
P

m pm log(kmpm) = �
P

m pm[log(pm) +m log(k)]

I The first term is just the spin 1/2 entropy, while the second is
log(k) times the expectation value of the path height, which
scales as O(

p
N)

I The leading term L ! 1 of entanglement entropy is:

2p
⇡
log(k)

r
2
L(N � L)

N

It increase as a square root of the size of the block of spins L.
Faster than usual log L.



q-deformation is similar to replacement of XXX by XXZ

Hq = Hq
F + HX + H@

Hq
F =

PN�2
j=1

Pk
c1,c2,c3=1[

⇣
| "c1j "c2j+1#

c3
j+2> �q2| "c2j "c3j+1#

c1
j+2>

⌘

⇣
<"c1j "c2j+1#

c3
j+2 |� q2 <"c2j "c3j+1#

c1
j+2 |

⌘
+

⇣
q2| #c1j "c2j+1#

c3
j+2> �| "c2j "c3j+1#

c1
j+2>

⌘

⇣
q2 <#c1j "c2j+1#

c3
j+2 |� <"c2j "c3j+1#

c1
j+2 |

⌘
] 1
1+q4

The ground state:

|GS >=
X

colored Dyck walks

qA(w)|w >

A(w) is area under Dyck walk. For q > 1 and k > 1 entanglement
entropy is linear in the size of the block: L log k .
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