

J. Schmiedmayer: Probing many body systems

Theory: Single-shot simulations of dynamic quantum many-body systems K. Sakmann, M. Kasevich, Nature Physics (2016)

Many Body Quantum Systems <-> Correlation Functions

3

On the Green's functions of quantized fields J. Schwinger PNAS (1951)

- Solving a quantum many-body problem is equivalent to knowing all its correlation functions.
- Real world: Observer can only measure a finite number of correlations
 -> describing the propagation and scattering of excitations.
- To (approximately) 'solve' the problem one need to find degrees of freedom where only few (low order) correlation functions are relevant.
- If one finds the degrees of freedom (basis) where the correlation functions factorize, this is equivalent to diagonalization of the many body Hamiltonian.
- Experiment / its 'read-out' always has a finite accuracy and errors. need clear signatures what can we learn from an experiment, and what is a fair comparison to the models

 > example: probing for quantum supremacy

Correlation Functions

The Nth order Correlation function

 $G^{(N)}(\mathbf{z}) = \langle \mathcal{O}(z_1) \mathcal{O}(z_2) \dots \mathcal{O}(z_N) \rangle$

Characterizes the propagation and the interactions of the degrees of freedom connected to the operators $O(z_i)$

It can be decomposed: $G^{(N)}(\mathbf{z}) = G^{(N)}_{\text{dis}}(\mathbf{z}) + G^{(N)}_{\text{con}}(\mathbf{z})$

- The disconnected part $G_{\rm dis}^{(N)}$ is fully determined through lower order correlations
- The connected part $G^{(N)}_{\rm con}$ contains genuine new information about the system at order N

J. Schmiedmayer: Probing many body systems by high order correlations

Correlation function of the phase

Schweigler et al. Nature 545, 323 (2017)

$$G^{(N)}(\mathbf{z},\mathbf{z}') = \langle [\varphi(z_1) - \varphi(z_1')] \dots [\varphi(z_N) - \varphi(z_N')] \rangle$$

Calculate the connected part of the correlation:

$$G_{\rm con}^{(N)}(\mathbf{z}, \mathbf{z}') = \sum_{\pi} \left[(|\pi| - 1)! \ (-1)^{|\pi| - 1} \prod_{B \in \pi} \left\langle \prod_{i \in B} [\varphi(z_i) - \varphi(z'_i)] \right\rangle \right]$$

Sum runs over all possible partitions π , the first product over all blocks B of the partition, the second over all elements of the block.

The number of partitions to consider grows rapidly with N. For N=10 there are already >10⁵ terms to consider !!!!

Decomposition into 2nd order correlations (Wick decomposition)

$$G_{\text{wick}}^{(N)}(\mathbf{z}, \mathbf{z}') = \sum_{\pi_2} \left| \prod_{B \in \pi_2} \left\langle [\varphi(z_{B_1}) - \varphi(z'_{B_1})] [\varphi(z_{B_2}) - \varphi(z'_{B_2})] \right\rangle \right|$$

$$H = \sum_{j=1}^{2} \int dz \left[\frac{\hbar^2}{2m} \frac{\partial \psi_j^{\dagger}}{\partial z} \frac{\partial \psi_j}{\partial z} + \frac{g_{1\mathrm{D}}}{2} \psi_j^{\dagger} \psi_j^{\dagger} \psi_j \psi_j + U(z) \psi_j^{\dagger} \psi_j - \mu \psi_j^{\dagger} \psi_j \right] - \hbar J \int dz \left[\psi_1^{\dagger} \psi_2 + \psi_2 \psi_1^{\dagger} \right]$$

Following: Gritsev, Polkovnikov, Demler Phys. Rev. B 75, 174511 (2007)

- Density phase representation
- Expanding the Hamiltonian in density fluctuations $\delta \rho_j$ and phase gradients $\partial_z \varphi_j$ up to second order and neglecting mixed terms separates *H* in symmetric and antisymmetric degrees of freedom
- Neglecting terms $|\delta \rho / n_0| \ll 1$

One arrives at Quantum Sine-Gordon model:

$$\hat{H}_{\rm SG} = \int dz \left[\frac{\hbar^2 n_{\rm 1D}}{4m} (\partial_z \hat{\varphi})^2 + g \delta \hat{\rho}^2 \right] - \int dz \ 2J n_{\rm 1D} \left[1 - \cos \hat{\varphi} \right]$$

"uncoupled harmonic oscillators"

anharmonic, non-gaussian, gapped,

phase coherence length

$$\lambda_T = 2\hbar^2 n_{1D}/(mk_BT)$$

phase (spin) healing length
 $l_J = \sqrt{\hbar/(4mJ)}$
Characteristic parameters
 $q = \lambda_T/l_J$

J. Schmiedmayer: Probing many body systems by high order correlations

Sine Gordon Model

Sine Gordon <=> Massive Thirring Model S. Colman Phys. Rev. D **217** 11, 2088 (1975).

Sine Gordon <=> Coulomb Gas

Polyakov, A. M. *Nuclear Physics B*, *120*, 429-458 (1977). Samuel, S. *Physical Review D*, *18*, 1916 (1978).

Sine Gordon <=> XY José, J. V. et al., *Physical Review B*, **16**, 1217 (1977).

AtomChip Integrated Circuits for ultra-cold Quantum Matter Combine the robustness of nano-fabrication an the quantum tools of atomic physics and quantum optics

- 1d elongated traps
- Easy to create a BEC
- Very stable and reproducible laboratory for quantum experiments
- Fast operation
- Single atom detection with unit efficiency
- Well controlled splitting and interference
- experiment optimized by genetic algorithm Rohringer et al. APL 93, 264101 (2008)

neglecting $\delta \hat{n}(z)$

 $C(z_1, z_2) \approx \langle \exp[i\varphi(z_1) - i\varphi(z_2)] \rangle$

16

4th order:

$$C(z_1, z_2, z_3, z_4) = \frac{\langle \Psi_1(z_1)\Psi_2^{\dagger}(z_1)\Psi_1^{\dagger}(z_2)\Psi_2(z_2)\Psi_1(z_3)\Psi_2^{\dagger}(z_3)\Psi_1^{\dagger}(z_4)\Psi_2(z_4)\rangle}{\langle |\Psi_1(z_1)|^2\rangle\langle |\Psi_1(z_2)|^2\rangle\langle |\Psi_2(z_3)|^2\rangle\langle |\Psi_2(z_4)|^2\rangle}$$

$$C(z_1, z_2, z_3, z_4) \approx \langle \exp[i\varphi(z_1) - i\varphi(z_2) + i\varphi(z_3) - i\varphi(z_4)]\rangle$$
In body systems by high order correlations

Correlation functions excitations <-> phase

in experiment we measure the phase $\varphi(z)$ directly -> look at phase correlators

 $\varphi(z) = \frac{1}{2} \sum \left[(-i) \sqrt{\frac{\pi}{2}} (b_i^{\dagger} - b_{-k}) e^{ikz} \right]$

$$C^{(2)}(z_1, z_2) = \langle [\varphi(z_1) - \varphi(z_2)]^2 \rangle = \langle [\Delta \varphi(z_1, z_2)]^2 \rangle$$

$$\Delta \varphi(z_1, z_2) = \varphi(z_1) - \varphi(z_2) \quad \text{Note: } \Delta \varphi \text{ is NOT restricted to } 2\pi$$

with

using

$$\sqrt{L} \sum_{k \neq 0} \left[\langle \psi(z_1) - \varphi(z_2) \rangle \right]^2 = \sum_{k_1, k_2} \frac{\pi}{K\sqrt{|k_1k_2|}} b^{\dagger}_{k_1} b_{-k_2} e^{ik_1 z_1 + ik_2 z_2} + \dots$$

4th order

$$C^{(4)}(z_1, z_2, z_3, z_4) = \langle [\varphi(z_1) - \varphi(z_2)]^2 [\varphi(z_3) - \varphi(z_4)]^2 \rangle$$

$$\propto b_{k_1}^{\dagger} b_{k_2}^{\dagger} b_{-k_3} b_{-k_4} + \dots$$

-> quasi particle scattering

 ${\rm J.}$ Schmiedmayer: Probing many body systems by high order correlations

18

17

correlation functions for the fields:

$$C(z_1, z_2) = \frac{\langle \Psi_1(z_1)\Psi_2^{\dagger}(z_1)\Psi_1^{\dagger}(z_2)\Psi_2(z_2)\rangle}{\langle |\Psi_1(z_1)|^2\rangle\langle |\Psi_2(z_2)|^2\rangle}$$
$$C(z_1, z_2) \approx \langle \exp[i\varphi(z_1) - i\varphi(z_2)]\rangle$$

 $C(z_1,z_2)$ contains all orders of connected parts

$$C(z_1, z_2) = \exp\left[\sum_{k=1}^{\infty} (-1)^k \frac{\langle (\Delta \varphi)^{2k} \rangle_c}{(2k)!}\right]$$

for Gaussian fluctuations

$$C(z_1, z_2) = \exp\left[-\frac{1}{2}\left\langle (\Delta\varphi)\right\rangle^2\right]$$

4th order correlations Connected and disconnected part

Schweigler et al. Nature **545**, 323 (2017)

to study factorization of correlation functions we look at:

 $\mathbf{G}^{(2)}(z_1, z_2) = \langle [\varphi(z_1) - \varphi(z_2)]^2 \rangle$ $G^{(4)}(z_1, z_2, z_3, z_4) =$ $\langle [\varphi(z_1) - \varphi(z_2)]^2 [\varphi(z_3) - \varphi(z_4)]^2 \rangle$

 $\Delta \varphi(z_1, z_2) = \varphi(z_1) - \varphi(z_2)$ $\Delta \phi$ is NOT restricted to $[-\pi,\pi)$

Connected/Disconnected part

$$G^{(N)}(\mathbf{z}) = G^{(N)}_{\text{con}}(\mathbf{z}) + G^{(N)}_{\text{dis}}(\mathbf{z})$$

J. Schmiedmayer: Probing many body systems by high order correlations

19

Characterizing Connected Correlations

Schweigler et al. Nature 545, 323 (2017)

Higher order connected correlations

Schweigler et al. Nature 545, 323 (2017)

J. Schmiedmayer: Probing many body systems by high order correlations

21

Quantifying factorization of correlation functions

Α full distribution functions $\langle \cos(\varphi) \rangle$ $\langle \cos(\varphi) \rangle$ slow cooling fast cooling 0.8 0.8 0.6 0.6 0.50 0.52 0,4 0.4 0.2 0.2 probability density C 1.5 1.5 1 1 0 0 .80 8 0.5 0.5 0 0 2 2 0 0 .92 .94 1 0 0 2 -2 0 2 2 0 $\Delta \varphi / \pi$ $\Delta \varphi / \pi$

J. Schmiedmayer: Probing many body systems by high order correlations

Schweigler et al. Nature 545, 323 (2017)

- the breakdown of factorization is evident in the **full distribution functions** of the phase by new peaks at multiples of 2π
- caused by the 2π periodic SG Hamiltonian $\rightarrow 2\pi$ phase jumps, 'kinks' = SG solitons

- SG Solitons are topological excitations
- Phase fluctuations around *topologically* different Vaccua

'False' Vacuum

J. Schmiedmayer: Probing many body systems by high order correlations

23

- high order (>10) correlation functions are accessible in experiment
- full distribution functions and the connected part of the higher order correlation functions contain genuine information about the quantum field theory
 - quasi particles
 - interaction of quasi particles
 - vacuum states
- gives insight in the effective theories describing the many body system
 - for our data 10th order connected correlation is still significant
 -> necessary to take terms up to 5th order into account (5-5 scattering)
 - -> what is needed on the theory side to describe data

Extracting the Coupling Constants

- The measured connected correlators contain contributions from the propagators (the 'legs')
- To extract the information about the coupling constants in the scattering vertices one has to ,amputate' the correlators
- Best done in momentum representation.
- In our finite system we have a discrete momentum spectrum (the modes of the system)
- Transform the correlators to the space of the modes

Extracting the Coupling Constants

- T. Schweigler, S. Erne preliminary
- The measured connected correlators contain contributions from the propagators (the 'legs')
- To extract the information about the coupling constants in the scattering vertices one has to ,amputate' the correlators
- Best done in momentum representation.
- In our finite system we have a discrete momentum spectrum (the modes of the system)
- Transform the correlators to the space of the modes

J. Schmiedmayer: Probing many body systems by high order correlations

Gaussification of correlations

www.AtomChip.org

Quench from J>0 to J=0

preliminary

Initial state non-Gaussian, dynamics Gaussian 4th order correlation function of phase

collaboration with Berges & Gasenzer groups, Heidelberg Eisert group, Berlin

J. Schmiedmayer: Probing many body systems by high order correlations

32

Quench into sine-Gordon model

emergent hydrodynamics

vww.AtomChip.org

Free -> Sine Gordon J=0 -> J finite

PRL 110, 090404 (2013) PHYSICAL REVIEW LETTERS

week ending 1 MARCH 2013

Universal Rephasing Dynamics after a Quantum Quench via Sudden Coupling of Two Initially Independent Condensates

Emanuele G. Dalla Torre,¹ Eugene Demler,¹ and Anatoli Polkovnikov² ¹Department of Physics, Harvard University, Cambridge, Massachusetts 02138, USA ²Department of Physics, Boston University, Boston, Massachusetts 02215, USA

 $C_{12}(t) = \langle \psi_1^{\dagger} \psi_2^{} + \text{H.c.} \rangle / 2N = \langle \cos(\sqrt{2}\phi) \rangle$

Ε

Free -> Sine Gordon experiment scan4328 T. Schweigler 0.8 Comparison to equilibrium theory: $\langle \cos(\phi) \rangle$ (ϕ) find effective, time – local parameters λ_T and q for every time step by fitting $(\cos(\varphi))$ and the second order correlation function $G^{(2)}$ 0.2 0 40 60 time [ms] 100 scan4328 scan4328 0.8 0.1 $M^{(4)}$ 0.6 $M^{(4)}$ 0.4

J. Schmiedmayer: Probing many body systems by high order correlations

∂.0 €) (200 (200 (200 (200)

> 0.2 0

0.8

0.6

0.4

0.2

 $M^{(4)}$

40

time [ms]

20 30 time [ms]

scan4161

20 30 time [ms]

40

50

40

60

80

100

Free -> Sine Gordon experiment scan4161 T. Schweigler 0.8

0.2 0 0

0.2

0.4

 $\langle \cos(\varphi) \rangle$

0.6

0.8

Comparison to equilibrium theory:

find effective, time – local parameters λ_T and q for every time step by fitting $(\cos(\varphi))$ and the second order correlation function $G^{(2)}$

scan4161 0.8 0.6 $M^{(4)}$ 0.4 0.2 0 0.2 0.4 0.6 $\langle \cos(\varphi) \rangle$

35

Phase locking in a 1d Josephson junction

M. Pigneur et al. PRL **120**, 173601 (2018)

Simpler initial state:

Many Body Tomography

In interference experiments we measure **phase** quadrature

Example:

Idea:

'free evolution' rotates the Wigner function of the modes in the low energy effective field theory description

Repeated measurement is equivalent to a tomographic slicing

allows reconstruction of the density matrix

Will give excess to entanglement entropy etc ...

J. Schmiedmayer: Probing many body systems by high order correlations

41

What have we learned

- Higher order correlation functions and the full distribution functions, especially the question if they factorize gives insight in the effective quantum field theories describing the many body system
- Verified Sine-Gordon model as emergent from the microscopic physics of two tunnel coupled super fluids
- Identified the topological excitations in the Sine-Gordon model.

- Observation of recurrences in coherences in long range order for a many body system of 5000 atoms
- Time evolution allows 'tomography'

Schweigler et al., Nature 545, 323 (2017) Rauer, et al., Science 360, 307 (2018)

J. Schmiedmayer: Prot

Hofferberth et al. Nature **449**, 324 (2007) Gring et al., Science **337**, 1318 (2012) Kuhnert et al., PRL **110**, 090405 (2013) Smith et al., NJP **15**, 075011 (2013) Langen et al., Nature Physics **9**, 460 (2013) Berrada, et al., Nat. Comm **4**, 2077 (2013) Geiger et al., NJP **16** 053034 (2014) Van Frank, et al., Nat. Comm **5**, 4009 (2014) Langen et al., Science **348**, 207 (2015) Steffens, et al., Nature Comm. **6**, 7663 (2015) Rauer, et al., PRL **116**, 030402(2016)

