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---Introduction

---Two scales, Tth and Th related each other
(description of pp and Pb-Pb pt distrbutions
at dfferent multiplicities)

---Dependence of n with multiplicity
--Gamma distribution for the temperature

as solution of Fokker-Plank associated to
Langevin equation for a stochastic white
noise

--Multiplicity distribution associated to hard
events ( gamma distribution)



--Entanglement entropy and its evolution
with energy or centrality

-- Clustering of color sources
-- Conclusions
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obtained at lower energies. Similarly the hard scale T, is given by the relation
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At /s = 13 TeV, the values found for the hard scale are T, = 0.72GeV and n = 3.1,
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. Typ and Ty, as a function of centrality for K9 production in p-p collisions at /Syy =7
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Variation of Ty, and Ty, with centrality for charged particle production in Pb-Pb collisions
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I

[y |

p-p —e—
Ph-Ph 1»—5—-

L1

1040
d Ny, fdn

1O



Experimental facts
--Two scales Tth an Th related each other
(pp and PbPb data at different centralities)
-- n parameter decreases with multiplicity in
pp and increases in PbPb



Thermal behaviour and Langevin
equation

Thermal behaviour--gaussian distribution in
momenta--stationary solution of Fokker-
Planck associated to Langevin equation
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Conditioned probability for hard collisions

Nin) = i (F,J)H:.{I — )" ' Ni(n)
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Entanglement entropy
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--Leading term log(n) (the n partons are the
n microstates and are equal probably and
the entropy is maximal)

--Additional term which depends only on Kk,
the (Inverse of)fluctuations on the number of
partons

--At very high k(no fluctuations) instead of

n microstates we have n/2( saturation or
clustering of color sources)
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Clustering of color sources

O 0
€

m Projectile and target interact via color field created by tl
constituent partons of the nuclei.

m Color field is confined in a region with transverse size
rn~ 0.2fm.

m We can see them as small areas in transverse plane.
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m With growing energy and/or atomic number of colliding
particles, the number of sources grows — The number of
strings grows with energy and/or atomic number.

m The number of strings also increases with increasing
centrality.

m Strings are randomly distributed in transverse plane so they
can overlap forming clusters.
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which in the limit of high density, £ = N;5,/5, becomes
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where N, is the number of color sources and F(€) is an universal factor

F{£}=V]_; ;

The factor 1 =¢7% is the fraction of the total collision area covered by color sources
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----- In the clustering of color sources is
naturally explained:

a)the relation between Th and Tth

b)the dependence of n with multiplicity
c)the gamma distribution obtained for the
Temperature distribution, coincides with the
Fokker-Planck equation solution for a
gaussian stochastic white noise and with
the distribution for events with hard
collisions




Conclusions

--The data on pp and different multiplicities
and Pb-Pb show that the two scales Tth and
Th are related each other

--The distribution of temperatures is a
gamma distribution(Fokker Plank solution,
multiplicity associated to hard events,cluster
size distribution)

--The entanglement entropy changes from
log(n) to log(n)/2



