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Thermodynamics of strong interactions

I Phases of the strongly interacting matter

I Properties of quark-gluon plasma
I Experiments: RHIC, LHC, FAIR, NICA
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Quantum Chromodynamics

I The QCD Lagrangian:

LE
QCD = LE

gluon + LE
fermion

= −1

4
Fµνa (x)F a

µν −
∑

f =u,d ,s...

ψ̄αf (x)
(
/D

E
αβ + mf δαβ

)
ψβf (x)

I The grand canonical partition function:

Z(T ,V , ~µ) =

∫ ∏
µ

DAµ
∏

f =u,d ,s...

DψfDψ̄f e−SE (T ,V ,~µ)

I The expectation value of a physical observable O:

〈O〉 =
1

Z (T ,V , ~µ)

∫ ∏
µ

DAµ
∏

f

DψfDψ̄f O e−SE (T ,V ,~µ)
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Strong coupling constant
I If there is a small parameter (coupling constant) – we can write
〈O〉 as a series expansion (e.g. works in QED, α ∼ 1/137) and
evaluate it order by order

I In QCD the coupling constant is large in the region of interest
(i.e. on the energy scales of few hundred MeV)
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Lattice gauge theory
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Lattice gauge theory

(b)(a)

U  (x,y)x

U  (x,y)y yU  (x+4,y)

xU  (x,y+3)

I Lattice gauge theory1 – a non-perturbative regularization scheme

I Discrete space-time, gauge invariant action

1Wilson (1974)
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Markov Chain Monte Carlo

I Evaluate the path integrals stochastically using Markov Chain
Monte Carlo (MCMC) method

I For many problems MCMC typically scales polynomially with
volume

I There is a class of problems where MCMC breaks down (=
requires exponential resources, often due to the “sign” problem):
I QCD at finite density
I Real-time evolution
I Spectral functions and transport properties
I Scattering
I Parton distribution functions
I ...and many more!
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Polyakov loop

I The Polyakov loop:

P =
1

Nc
Tr

Nτ−1∏
x0=0

U0(x0,~x)

I The order parameter for the confinement-deconfinement
transition in pure gauge theory, related to the center symmetry

I Related to the free energy of a static quark anti-quark pair

〈P〉(T ) = exp(−F∞(T )/(2T ))

I Not an order parameter in full QCD
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Quantum simulation
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Quantum simulation

I Technology: Ultra-cold atoms trapped in optical lattices (counter
propagating laser beams)2

I Possibility of tunable interactions

I Goal: Quantum simulator for lattice gauge theory

2Picture courtesy of JILA
A. Bazavov (MSU) Quantum Entanglement 2018 September 11, 2018 12 / 41



Quantum simulation

I Technology: Ultra-cold atoms trapped in optical lattices (counter
propagating laser beams)2

I Possibility of tunable interactions

I Goal: Quantum simulator for lattice gauge theory

2Picture courtesy of JILA
A. Bazavov (MSU) Quantum Entanglement 2018 September 11, 2018 12 / 41



Quantum simulation

I Technology: Ultra-cold atoms trapped in optical lattices (counter
propagating laser beams)2

I Possibility of tunable interactions

I Goal: Quantum simulator for lattice gauge theory

2Picture courtesy of JILA
A. Bazavov (MSU) Quantum Entanglement 2018 September 11, 2018 12 / 41



Analog quantum simulation of
(1+1)D Abelian-Higgs model
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(1+1)D Abelian-Higgs model
The partition function:

Z =

∫
Dφ†DφDUe−S ,

S = Sg + Sh + Sλ,

Sg = −βpl

∑
x

Re [Upl ,x ] ,

Sh = − κτ
∑

x

[
eµφ†xUx ,τ̂φx+τ̂ + e−µφ†x+τ̂U

†
x ,τ̂φx

]
− κs

∑
x

[
φ†xUx ,ŝφx+ŝ + φ†x+ŝU

†
x ,ŝφx

]
,

Sλ = λ
∑

x

(
φ†xφx − 1

)2
+
∑

x

φ†xφx .
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(1+1)D Abelian-Higgs model

Limiting cases:

I κ = 0: U(1) pure gauge theory

I λ <∞, β =∞: φ4 theory

I λ =∞, β =∞: O(2) model, Kosterlitz-Thouless transition
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(1+1)D Abelian-Higgs model

I In the hopping part of the action Sh, we can separate the
compact and non-compact variables

Sh = − 2κτ |φx ||φx+τ̂ |
∑

x

cos(θx+τ̂ − θx + Ax ,τ̂ − iµ)

− 2κs |φx ||φx+ŝ |
∑

x

cos(θx+ŝ − θx + Ax ,ŝ)

I and then Fourier transform the Boltzmann weight, i.e.

exp[2κτ |φx ||φx+τ̂ | cos(θx+τ̂ − θx + Ax ,τ̂ − iµ)]

=
∞∑

n=−∞
In(2κτ |φx ||φx+τ̂ |) exp[in(θx+τ̂ − θx + Ax ,τ̂ − iµ)]
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(1+1)D Abelian-Higgs model
I The effective action for the gauge and hopping part

e−Seff =
∑
{m�}

[∏
�

Im�(βpl )
∏

x

(
Inx,ŝ

(2κs |φx ||φx+ŝ |)

×Inx,τ̂
(2κτ |φx ||φx+τ̂ |) exp(µnx ,τ̂ )

)]

I Using the hopping parameter expansion for κ = κs = κτ and
with Mx ≡ φ†xφx :

Seff =
∑
〈xy〉

(
−κ2MxMy +

1

4
κ4(MxMy )2

)

−2κ4 I1(βpl )

I0(βpl )

∑
�(xyzw)

MxMyMzMw + O(κ6)

Z =

∫
Dφ†DφDUe−S '

∫
DMe−Seff (M)−Sλ(M)
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Hopping parameter expansion

I The hopping parameter expansion3

Zκ,λ

Zλ
= 1 + Vdγ2

2κ
2

+ Vd

{[
1

2
(Vd − 4d + 1) + (d − 1)

I1(βpl )

I0(βpl )

]
γ

4
2 + (2d − 1)γ2

2γ4 +
1

4
γ

2
4

}
κ

4

+ Vd

{[
1

6
(Vd − 1)(Vd − 2)−

2

3
(d − 1)(2d − 1)− (2d − 1)2 − (2d − 1)(Vd − 6d + 2)

+ 2(d − 1)(2d − 3)

(
I1(βpl )

I0(βpl )

)2

+ (d − 1)(Vd − 8d + 4)
I1(βpl )

I0(βpl )

+
4

3
(d − 1)(d − 2)

(
I1(βpl )

I0(βpl )

)3]
γ

6
2 + (2(d − 1)

I1(βpl )

I0(βpl )
+ (2d − 1)2 +

1

4
(Vd − 4d + 1))γ2

2γ
2
4

+ (8(d − 1)2 I1(βpl )

I0(βpl )
+ (2d − 1)(Vd − 6d + 2))γ4

2γ4 +
2

3
(2d − 1)(d − 1)γ3

2γ6

+
1

2
(2d − 1)γ2γ4γ6 +

1

36
γ

2
6

}
κ

6

where γ2k ≡ 〈ρ2k〉Zλ .

3Heitger (1997)
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Tests of the hopping parameter expansion
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I Left: Lφ at λ = 0.05 and 0.1 for β = 20 compared with the
O(κ3) and O(κ5) expansions

I Right: Lφ at λ = 0.1 for β = 0.02− 20 compared with the
O(κ5) expansion
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The partition function in the dual representation

I The partition function can be rewritten exactly in a
gauge-invariant way in terms of integer fields living on the
plaquettes:

Z =
∑
{m}

( ∏
x ,ν<µ

tm(βpl )

)(∏
x ,ν

tm−m′(2κ)

)
,

tm(z) ≡ Im(z)/I0(z), tm(0) = δn,0

I The expectation value of the Polyakov loop:

〈P〉 =
1

Z

∫
D[φ†]D[φ]D[U]

(
Nτ−1∏
n=0

Ux∗+nτ̂ ,τ̂

)
e−S

where x∗ is a single specific spatial site
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The Polyakov loop
I The Polyakov loop insertion modifies the link integrals:∫

θx

2π
e i(n−mr +ml +1)θx = δn,mr−ml−1,

where the subscripts l and r denote the “left” and “right”
plaquette quantum numbers, respectively, to the vertical
(temporal) link in question

I In the integer field representation the expectation value is:

〈P〉 =
1

Z

∑
{m}

[ ∏
x ,ν<µ

tm(βpl )

][∏
x ,ν

tm−m′(2κ)

][
Nτ−1∏
n=0

tm−m′−1(2κ)

tm−m′(2κ)

]

I The Polyakov loop in terms of the new variables:

P =
Nτ−1∏
n=0

tm−m′−1(2κ)

tm−m′(2κ)

A. Bazavov (MSU) Quantum Entanglement 2018 September 11, 2018 21 / 41



The Polyakov loop
I The Polyakov loop insertion modifies the link integrals:∫

θx

2π
e i(n−mr +ml +1)θx = δn,mr−ml−1,

where the subscripts l and r denote the “left” and “right”
plaquette quantum numbers, respectively, to the vertical
(temporal) link in question

I In the integer field representation the expectation value is:

〈P〉 =
1

Z

∑
{m}

[ ∏
x ,ν<µ

tm(βpl )

][∏
x ,ν

tm−m′(2κ)

][
Nτ−1∏
n=0

tm−m′−1(2κ)

tm−m′(2κ)

]

I The Polyakov loop in terms of the new variables:

P =
Nτ−1∏
n=0

tm−m′−1(2κ)

tm−m′(2κ)

A. Bazavov (MSU) Quantum Entanglement 2018 September 11, 2018 21 / 41



The Polyakov loop
I The Polyakov loop insertion modifies the link integrals:∫

θx

2π
e i(n−mr +ml +1)θx = δn,mr−ml−1,

where the subscripts l and r denote the “left” and “right”
plaquette quantum numbers, respectively, to the vertical
(temporal) link in question

I In the integer field representation the expectation value is:

〈P〉 =
1

Z

∑
{m}

[ ∏
x ,ν<µ

tm(βpl )

][∏
x ,ν

tm−m′(2κ)

][
Nτ−1∏
n=0

tm−m′−1(2κ)

tm−m′(2κ)

]

I The Polyakov loop in terms of the new variables:

P =
Nτ−1∏
n=0

tm−m′−1(2κ)

tm−m′(2κ)

A. Bazavov (MSU) Quantum Entanglement 2018 September 11, 2018 21 / 41



Tensor Renormalization Group (TRG) method

B

B

A(τ)

A(τ)

A(s) A(s)

B

B

I Rewrite the partition function in a tensor form

I Solve by blocking and truncation in the number of states
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The Polyakov loop
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I Comparison TRG and MC for a range of κ and βpl values for
Ns = Nτ = 16.
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The Polyakov loop
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I Comparison of TRG and MC data with fixed spatial length and
various temporal lengths, Ns = 16, βpl = 5 and Dbond = 41
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The Polyakov loop

I The Polyakov loop can be represented as the ratio of two
partition functions: one with the inclusion of the static charge,
and the other without:

〈P〉 =
Z̃

Z
=

Tr[T̃Nτ ]

Tr[TNτ ]
=

∑N
i=0 λ̃

Nτ
i∑N

i=0 λ
Nτ
i

I In the large Nτ limit the Polyakov loop expectation value is
dominated by the largest eigenvalues:

log〈P〉 ' Nτ log(λ̃0/λ0) = −Nτ∆E

where ∆E is the energy gap between the ground state of the
system with the static charge, and that without:

〈P〉 ' e−Nτ∆E
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The energy gap
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I The energy gap ∆E for various spatial lattice sizes κ = 1.6,
βpl = 44

A. Bazavov (MSU) Quantum Entanglement 2018 September 11, 2018 26 / 41



The energy gap
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I Comparison of TRG and MC data for ∆E at κ = 1.6
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Universal scaling

I For κ large enough (greater than the Kosterlitz-Thouless (KT)
transition value) and g2Ns small enough, we expect the following
scaling:

∆E ' a

Ns
+ b g2Ns

I If we multiply this equation by Ns , then the right hand side
depends only on g2N2

s

I We conjecture that this scaling persists beyond the lowest order:

∆ENs = f (g2N2
s )

A. Bazavov (MSU) Quantum Entanglement 2018 September 11, 2018 28 / 41



Universal scaling

I For κ large enough (greater than the Kosterlitz-Thouless (KT)
transition value) and g2Ns small enough, we expect the following
scaling:

∆E ' a

Ns
+ b g2Ns

I If we multiply this equation by Ns , then the right hand side
depends only on g2N2

s

I We conjecture that this scaling persists beyond the lowest order:

∆ENs = f (g2N2
s )

A. Bazavov (MSU) Quantum Entanglement 2018 September 11, 2018 28 / 41



Universal scaling

I For κ large enough (greater than the Kosterlitz-Thouless (KT)
transition value) and g2Ns small enough, we expect the following
scaling:

∆E ' a

Ns
+ b g2Ns

I If we multiply this equation by Ns , then the right hand side
depends only on g2N2

s

I We conjecture that this scaling persists beyond the lowest order:

∆ENs = f (g2N2
s )

A. Bazavov (MSU) Quantum Entanglement 2018 September 11, 2018 28 / 41



Universal scaling
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I Data collapse for the energy gap ∆E for different Ns
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Universal scaling

I The data collapse breaks down if we increase g while keeping Ns

fixed

I For g � 1 the lowest energy state corresponds to having all
plaquette quantum numbers set to zero

I This is possible when the matter loop follows exactly the
Polyakov loop in the opposite direction

I This state contributes (t1(2κ))Nτ to the partition function, thus
for large g we expect

∆E → − ln(t1(2κ)),

independent of Ns
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The continuous-time limit
I The continuous-time limit:

κτ , βpl →∞, κs , aτ → 0

keeping fixed:

U ≡ 1

βpla
=

g2

a
, Y ≡ 1

2κτa
, X ≡ 2κs

a

I In this limit the transfer matrix is close to identity and we can
expand to first order in couplings – we obtain the Hamiltonian for
quantum rotors, θ̂, L̂ = −i∂/∂θ with the commutation relations:

[L̂, e±i θ̂] = ±e±i θ̂

I In 1403.5238 we considered a spin-1 truncation and represented
this algebra with the angular momentum algebra

[L̂z , L̂±] = ±L̂±
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The continuous-time limit

I The three-state spin-1 Hamiltonian is then:

H =
U

2

Ns∑
i=1

(Lz
i )2

+
Y

2

∑
i

′
(Lz

i+1 − Lz
i )2 − X√

2

Ns∑
i=1

Lx
i

I This Hamiltonian is mapped onto the two-species Bose-Hubbard
model that can be potentially quantum simulated with a
“ladder” structure
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Bose-Hubbard realization for the U(1)-Higgs model

Abelian-Higgs BH model
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I Comparison of the energy spectra for two-site (left) and four-site
(right) system calculated in the Abelian-Higgs model and in the
spin-1 approximation
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Improvements

I In order to go beyond the spin-1 approximation we need the
following modification:

Lx → Ux =
1

2
(U+ + U−),

where
U± |m〉 = |m ± 1〉

I The “spin-n” Hamiltonian is then:

H =
U

2

Ns∑
i=1

(Lz
i )2

+
Y

2

∑
i

′
(Lz

i+1 − Lz
i )2 − X

Ns∑
i=1

Ux
i
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The Polyakov loop insertion
I We take the continuous-time limit for the P operator:

P → 1 +
1

2(2κτ )
(2(m −m′)− 1) +O((2κτ )−2)

I This generates an additional term in the quantum Hamiltonian
(located at a single site i∗)

H̃ = H − Y

2
(2(Lz

i∗+1 − Lz
i∗)− 1)

I To avoid boundary effects the Polyakov loop is inserted in the
middle of the spatial lattice:

H̃ =
U

2

Ns∑
i=1

(Lz
i )2 +

Y

2

∑
i 6= Ns

2

′
(Lz

i+1 − Lz
i )2

+
Y

2
(Lz

Ns
2

+1
− Lz

Ns
2

− 1)2 − X
Ns∑

i=1

Ux
i
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Polyakov loop vs boundary conditions
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I Insertion of the Polyakov loop probes the response of the system
to the addition of a single static charge

I Alternatively, one can probe Q 6= 0 sectors by changing the
boundary conditions (similar to subjecting the system to an
external electric field)
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Polyakov loop vs boundary conditions
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I Data collapse for the energy gap between 01BC and 0BC systems
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Polyakov loop vs boundary conditions

I We can similarly introduce the 01 boundary conditions in the
continuous time limit

I The Hamiltonian is modified to

H10 =
U

2

Ns∑
i=1

(Lz
i )2 +

Y

2

Ns−1∑
i=1

(Lz
i+1 − Lz

i )2

+
Y

2
(Lz

Ns
)2 +

Y

2
(Lz

1 − 1)2 − X
Ns∑

i=1

Ux
i
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Polyakov loop vs boundary conditions
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I Data collapse for the energy gap between 01BC and 0BC
systems in the continuous-time limit

A. Bazavov (MSU) Quantum Entanglement 2018 September 11, 2018 39 / 41



Quantum simulation
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I Multi-leg ladder implementation for spin-2

I The atoms hop along the rungs but not the legs of the ladder

I Coupling between the atoms in different rungs is implemented
via an interaction V
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Conclusion

I Analog quantum simulations have potential to become useful for
studying models relevant for particle and nuclear physics

I Cold atoms in optical lattices offer a very promising direction

I Lattice gauge theory in a good position to be “translated” to
quantum simulators, canonical quantization needs to be better
developed

I (1+1)D Abelian-Higgs model has been studied with MC and
TRG methods and a (manifestly gauge invariant) mapping has
been developed to a Hamiltonian formulation that may be
quantum simulated in optical lattices

I The primary object of interest in our recent study4 is the
Polyakov loop for two reasons: a) it can be related to special
boundary conditions, b) it can be translated to the energy gap

I Both of these features are important for control and
measurement in optical lattice simulators
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