Quantum simulation of the universal features of the Polyakov loop

Alexei Bazavov

Michigan State University
September 11, 2018

Work done in collaboration with:

- Y. Meurice (University of lowa)
- S.-W. Tsai (University of California, Riverside)
- J. Unmuth-Yockey (Syracuse University)
- J. Zhang (University of California, Riverside)
- J. Zieher (Max Planck Insitute for Quantum Optics, Germany)

Some results: 1403.5238, 1503.08354, 1703.10577, 1803.11166, 1807.09186

Introduction

Lattice gauge theory

Quantum simulation

Analog quantum simulation of (1+1)D Abelian-Higgs model

Conclusion

Thermodynamics of strong interactions

- Phases of the strongly interacting matter

Thermodynamics of strong interactions

- Phases of the strongly interacting matter
- Properties of quark-gluon plasma

Thermodynamics of strong interactions

- Phases of the strongly interacting matter
- Properties of quark-gluon plasma
- Experiments: RHIC, LHC, FAIR, NICA

Quantum Chromodynamics

- The QCD Lagrangian:

$$
\begin{aligned}
\mathcal{L}_{Q C D}^{E} & =\mathcal{L}_{\text {gluon }}^{E}+\mathcal{L}_{\text {fermion }}^{E} \\
& =-\frac{1}{4} F_{a}^{\mu \nu}(x) F_{\mu \nu}^{a}-\sum_{f=u, d, s \ldots} \bar{\psi}_{f}^{\alpha}(x)\left(\Phi_{\alpha \beta}^{E}+m_{f} \delta_{\alpha \beta}\right) \psi_{f}^{\beta}(x)
\end{aligned}
$$

Quantum Chromodynamics

- The QCD Lagrangian:

$$
\mathcal{L}_{Q C D}^{E}=\mathcal{L}_{\text {gluon }}^{E}+\mathcal{L}_{\text {fermion }}^{E}
$$

$$
=-\frac{1}{4} F_{a}^{\mu \nu}(x) F_{\mu \nu}^{a}-\sum_{f=u, d, s \ldots} \bar{\psi}_{f}^{\alpha}(x)\left(D_{\alpha \beta}^{E}+m_{f} \delta_{\alpha \beta}\right) \psi_{f}^{\beta}(x)
$$

- The grand canonical partition function:

$$
\mathcal{Z}(T, V, \vec{\mu})=\int \prod_{\mu} \mathcal{D} A_{\mu} \prod_{f=u, d, s \ldots} \mathcal{D} \psi_{f} \mathcal{D} \bar{\psi}_{f} \mathrm{e}^{-S_{E}(T, V, \vec{\mu})}
$$

Quantum Chromodynamics

- The QCD Lagrangian:

$$
\mathcal{L}_{Q C D}^{E}=\mathcal{L}_{\text {gluon }}^{E}+\mathcal{L}_{\text {fermion }}^{E}
$$

$$
=-\frac{1}{4} F_{a}^{\mu \nu}(x) F_{\mu \nu}^{a}-\sum_{f=u, d, s \ldots} \bar{\psi}_{f}^{\alpha}(x)\left(D_{\alpha \beta}^{E}+m_{f} \delta_{\alpha \beta}\right) \psi_{f}^{\beta}(x)
$$

- The grand canonical partition function:

$$
\mathcal{Z}(T, V, \vec{\mu})=\int \prod_{\mu} \mathcal{D} A_{\mu} \prod_{f=u, d, s \ldots} \mathcal{D} \psi_{f} \mathcal{D} \bar{\psi}_{f} \mathrm{e}^{-S_{E}(T, V, \vec{\mu})}
$$

- The expectation value of a physical observable \mathcal{O} :

$$
\langle\mathcal{O}\rangle=\frac{1}{Z(T, V, \vec{\mu})} \int \prod_{\mu} \mathcal{D} A_{\mu} \prod_{f} \mathcal{D} \psi_{f} \mathcal{D} \bar{\psi}_{f} \mathcal{O} \mathrm{e}^{-S_{E}(T, V, \vec{\mu})}
$$

Strong coupling constant

- If there is a small parameter (coupling constant) - we can write $\langle\mathcal{O}\rangle$ as a series expansion (e.g. works in QED, $\alpha \sim 1 / 137$) and evaluate it order by order

Strong coupling constant

- If there is a small parameter (coupling constant) - we can write $\langle\mathcal{O}\rangle$ as a series expansion (e.g. works in QED, $\alpha \sim 1 / 137$) and evaluate it order by order
- In QCD the coupling constant is large in the region of interest (i.e. on the energy scales of few hundred MeV)

Lattice gauge theory

Lattice gauge theory

(a)

(b)

Lattice gauge theory

- Lattice gauge theory ${ }^{1}$ - a non-perturbative regularization scheme

Lattice gauge theory

- Lattice gauge theory ${ }^{1}$ - a non-perturbative regularization scheme
- Discrete space-time, gauge invariant action

Markov Chain Monte Carlo

- Evaluate the path integrals stochastically using Markov Chain Monte Carlo (MCMC) method

Markov Chain Monte Carlo

- Evaluate the path integrals stochastically using Markov Chain Monte Carlo (MCMC) method
- For many problems MCMC typically scales polynomially with volume

Markov Chain Monte Carlo

- Evaluate the path integrals stochastically using Markov Chain Monte Carlo (MCMC) method
- For many problems MCMC typically scales polynomially with volume
- There is a class of problems where MCMC breaks down (= requires exponential resources, often due to the "sign" problem):

Markov Chain Monte Carlo

- Evaluate the path integrals stochastically using Markov Chain Monte Carlo (MCMC) method
- For many problems MCMC typically scales polynomially with volume
- There is a class of problems where MCMC breaks down (= requires exponential resources, often due to the "sign" problem):
- QCD at finite density

Markov Chain Monte Carlo

- Evaluate the path integrals stochastically using Markov Chain Monte Carlo (MCMC) method
- For many problems MCMC typically scales polynomially with volume
- There is a class of problems where MCMC breaks down (= requires exponential resources, often due to the "sign" problem):
- QCD at finite density
- Real-time evolution

Markov Chain Monte Carlo

- Evaluate the path integrals stochastically using Markov Chain Monte Carlo (MCMC) method
- For many problems MCMC typically scales polynomially with volume
- There is a class of problems where MCMC breaks down (= requires exponential resources, often due to the "sign" problem):
- QCD at finite density
- Real-time evolution
- Spectral functions and transport properties

Markov Chain Monte Carlo

- Evaluate the path integrals stochastically using Markov Chain Monte Carlo (MCMC) method
- For many problems MCMC typically scales polynomially with volume
- There is a class of problems where MCMC breaks down (= requires exponential resources, often due to the "sign" problem):
- QCD at finite density
- Real-time evolution
- Spectral functions and transport properties
- Scattering

Markov Chain Monte Carlo

- Evaluate the path integrals stochastically using Markov Chain Monte Carlo (MCMC) method
- For many problems MCMC typically scales polynomially with volume
- There is a class of problems where MCMC breaks down (= requires exponential resources, often due to the "sign" problem):
- QCD at finite density
- Real-time evolution
- Spectral functions and transport properties
- Scattering
- Parton distribution functions

Markov Chain Monte Carlo

- Evaluate the path integrals stochastically using Markov Chain Monte Carlo (MCMC) method
- For many problems MCMC typically scales polynomially with volume
- There is a class of problems where MCMC breaks down (= requires exponential resources, often due to the "sign" problem):
- QCD at finite density
- Real-time evolution
- Spectral functions and transport properties
- Scattering
- Parton distribution functions
- ...and many more!

Polyakov loop

- The Polyakov loop:

$$
P=\frac{1}{N_{c}} \operatorname{Tr} \prod_{x_{0}=0}^{N_{\tau}-1} U_{0}\left(x_{0}, \vec{x}\right)
$$

Polyakov loop

- The Polyakov loop:

$$
P=\frac{1}{N_{c}} \operatorname{Tr} \prod_{x_{0}=0}^{N_{\tau}-1} U_{0}\left(x_{0}, \vec{x}\right)
$$

- The order parameter for the confinement-deconfinement transition in pure gauge theory, related to the center symmetry

Polyakov loop

- The Polyakov loop:

$$
P=\frac{1}{N_{c}} \operatorname{Tr} \prod_{x_{0}=0}^{N_{\tau}-1} U_{0}\left(x_{0}, \vec{x}\right)
$$

- The order parameter for the confinement-deconfinement transition in pure gauge theory, related to the center symmetry
- Related to the free energy of a static quark anti-quark pair

$$
\langle P\rangle(T)=\exp \left(-F_{\infty}(T) /(2 T)\right)
$$

Polyakov loop

- The Polyakov loop:

$$
P=\frac{1}{N_{c}} \operatorname{Tr} \prod_{x_{0}=0}^{N_{\tau}-1} U_{0}\left(x_{0}, \vec{x}\right)
$$

- The order parameter for the confinement-deconfinement transition in pure gauge theory, related to the center symmetry
- Related to the free energy of a static quark anti-quark pair

$$
\langle P\rangle(T)=\exp \left(-F_{\infty}(T) /(2 T)\right)
$$

- Not an order parameter in full QCD

Quantum simulation

Quantum simulation

- Technology: Ultra-cold atoms trapped in optical lattices (counter propagating laser beams) ${ }^{2}$

[^0]
Quantum simulation

- Technology: Ultra-cold atoms trapped in optical lattices (counter propagating laser beams) ${ }^{2}$
- Possibility of tunable interactions

[^1]
Quantum simulation

- Technology: Ultra-cold atoms trapped in optical lattices (counter propagating laser beams) ${ }^{2}$
- Possibility of tunable interactions
- Goal: Quantum simulator for lattice gauge theory

[^2]
Analog quantum simulation of $(1+1)$ D Abelian-Higgs model

$(1+1) D$ Abelian-Higgs model

The partition function:

$$
\begin{gathered}
Z=\int D \phi^{\dagger} D \phi D U e^{-S} \\
S=S_{g}+S_{h}+S_{\lambda}
\end{gathered}
$$

$(1+1) D$ Abelian-Higgs model

The partition function:

$$
\begin{gathered}
Z=\int D \phi^{\dagger} D \phi D U e^{-S}, \\
S=S_{g}+S_{h}+S_{\lambda}, \\
S_{g}=-\beta_{p l} \sum_{x} \operatorname{Re}\left[U_{p l, x}\right], \\
S_{h}=-\kappa_{\tau} \sum_{x}\left[\mathrm{e}^{\mu} \phi_{x}^{\dagger} U_{x, \hat{\tau}} \phi_{x+\hat{\tau}}+\mathrm{e}^{-\mu} \phi_{x+\hat{\tau}}^{\dagger} U_{x, \hat{\tau}}^{\dagger} \phi_{x}\right] \\
-\kappa_{s} \sum_{x}\left[\phi_{x}^{\dagger} U_{x, \hat{s}} \phi_{x+\hat{s}}+\phi_{x+\hat{s}}^{\dagger} U_{x, \hat{s}}^{\dagger} \phi_{x}\right],
\end{gathered}
$$

$(1+1) D$ Abelian-Higgs model

The partition function:

$$
\begin{gathered}
Z=\int D \phi^{\dagger} D \phi D U e^{-S}, \\
S=S_{g}+S_{h}+S_{\lambda}, \\
S_{g}=-\beta_{p l} \sum_{x} \operatorname{Re}\left[U_{p l, x}\right], \\
S_{h}=-\kappa_{\tau} \sum_{x}\left[\mathrm{e}^{\mu} \phi_{x}^{\dagger} U_{x, \hat{\tau}} \phi_{x+\hat{\tau}}+\mathrm{e}^{-\mu} \phi_{x+\hat{\tau}}^{\dagger} U_{x, \hat{\tau}}^{\dagger} \phi_{x}\right] \\
-\kappa_{s} \sum_{x}\left[\phi_{x}^{\dagger} U_{x, \hat{s}} \phi_{x+\hat{s}}+\phi_{x+\hat{s}}^{\dagger} U_{x, \hat{s}}^{\dagger} \phi_{x}\right], \\
S_{\lambda}=\lambda \sum_{x}\left(\phi_{x}^{\dagger} \phi_{x}-1\right)^{2}+\sum_{x} \phi_{x}^{\dagger} \phi_{x}
\end{gathered}
$$

$(1+1) D$ Abelian-Higgs model

Limiting cases:

- $\kappa=0: U(1)$ pure gauge theory

$(1+1) D$ Abelian-Higgs model

Limiting cases:

- $\kappa=0: U(1)$ pure gauge theory
- $\lambda<\infty, \beta=\infty: \phi^{4}$ theory

$(1+1) D$ Abelian-Higgs model

Limiting cases:

- $\kappa=0: U(1)$ pure gauge theory
- $\lambda<\infty, \beta=\infty: \phi^{4}$ theory
- $\lambda=\infty, \beta=\infty: O(2)$ model, Kosterlitz-Thouless transition

$(1+1) D$ Abelian-Higgs model

- In the hopping part of the action S_{h}, we can separate the compact and non-compact variables

$$
\begin{aligned}
S_{h}= & -2 \kappa_{\tau}\left|\phi_{x}\right|\left|\phi_{x+\hat{\tau}}\right| \sum_{x} \cos \left(\theta_{x+\hat{\tau}}-\theta_{x}+A_{x, \hat{\tau}}-i \mu\right) \\
& -2 \kappa_{s}\left|\phi_{x}\right|\left|\phi_{x+\hat{s}}\right| \sum_{x} \cos \left(\theta_{x+\hat{s}}-\theta_{x}+A_{x, \hat{s}}\right)
\end{aligned}
$$

$(1+1) D$ Abelian-Higgs model

- In the hopping part of the action S_{h}, we can separate the compact and non-compact variables

$$
\begin{aligned}
S_{h}= & -2 \kappa_{\tau}\left|\phi_{x}\right|\left|\phi_{x+\hat{\tau}}\right| \sum_{x} \cos \left(\theta_{x+\hat{\tau}}-\theta_{x}+A_{x, \hat{\tau}}-i \mu\right) \\
& -2 \kappa_{s}\left|\phi_{x}\right|\left|\phi_{x+\hat{s}}\right| \sum_{x} \cos \left(\theta_{x+\hat{s}}-\theta_{x}+A_{x, \hat{s}}\right)
\end{aligned}
$$

- and then Fourier transform the Boltzmann weight, i.e.

$$
\begin{aligned}
& \exp \left[2 \kappa_{\tau}\left|\phi_{x}\right|\left|\phi_{x+\hat{\tau}}\right| \cos \left(\theta_{x+\hat{\tau}}-\theta_{x}+A_{x, \hat{\tau}}-i \mu\right)\right] \\
= & \sum_{n=-\infty}^{\infty} I_{n}\left(2 \kappa_{\tau}\left|\phi_{x}\right|\left|\phi_{x+\hat{\tau}}\right|\right) \exp \left[i n\left(\theta_{x+\hat{\tau}}-\theta_{x}+A_{x, \hat{\tau}}-i \mu\right)\right]
\end{aligned}
$$

$(1+1) D$ Abelian-Higgs model

- The effective action for the gauge and hopping part

$$
\begin{aligned}
& e^{-S_{e f f}}=\sum_{\left\{m_{\square}\right\}}\left[\prod _ { \square } I _ { m _ { \square } } (\beta _ { p l }) \prod _ { x } \left(I_{n_{x}, \hat{s}}\left(2 \kappa_{s}\left|\phi_{x}\right|\left|\phi_{x+\hat{s}}\right|\right)\right.\right. \\
&\left.\left.\times I_{n_{x, \hat{\tau}}}\left(2 \kappa_{\tau}\left|\phi_{x}\right|\left|\phi_{x+\hat{\tau}}\right|\right) \exp \left(\mu n_{x, \hat{\tau}}\right)\right)\right]
\end{aligned}
$$

(1+1)D Abelian-Higgs model

- The effective action for the gauge and hopping part

$$
\begin{aligned}
e^{-S_{e f f}}=\sum_{\left\{m_{\square}\right\}} & {\left[\prod _ { \square } I _ { m _ { \square } } (\beta _ { p l }) \prod _ { x } \left(I_{n_{x, \hat{s}}}\left(2 \kappa_{s}\left|\phi_{x}\right|\left|\phi_{x+\hat{s}}\right|\right)\right.\right.} \\
& \left.\left.\times I_{n_{x, \hat{\tau}}}\left(2 \kappa_{\tau}\left|\phi_{x}\right|\left|\phi_{x+\hat{\tau}}\right|\right) \exp \left(\mu n_{x, \hat{\tau}}\right)\right)\right]
\end{aligned}
$$

- Using the hopping parameter expansion for $\kappa=\kappa_{s}=\kappa_{\tau}$ and with $M_{x} \equiv \phi_{x}^{\dagger} \phi_{x}$:

$$
\begin{array}{r}
S_{e f f}=\sum_{\langle x y\rangle}\left(-\kappa^{2} M_{x} M_{y}+\frac{1}{4} \kappa^{4}\left(M_{x} M_{y}\right)^{2}\right) \\
-2 \kappa^{4} \frac{I_{1}\left(\beta_{p l}\right)}{I_{0}\left(\beta_{p l}\right)} \sum_{\square(x y z w)} M_{x} M_{y} M_{z} M_{w}+O\left(\kappa^{6}\right) \\
Z=\int D \phi^{\dagger} D \phi D U e^{-S} \simeq \int D M e^{-S_{e f f}(M)-S_{\lambda}(M)}
\end{array}
$$

Hopping parameter expansion

- The hopping parameter expansion ${ }^{3}$

$$
\begin{aligned}
\frac{Z_{\kappa, \lambda}}{Z_{\lambda}} & =1+V d \gamma_{2}^{2} \kappa^{2} \\
& +V d\left\{\left[\frac{1}{2}(V d-4 d+1)+(d-1) \frac{I_{1}\left(\beta_{p l}\right)}{I_{0}\left(\beta_{p l}\right)}\right] \gamma_{2}^{4}+(2 d-1) \gamma_{2}^{2} \gamma_{4}+\frac{1}{4} \gamma_{4}^{2}\right\} \kappa^{4} \\
& +V d\left\{\left[\frac{1}{6}(V d-1)(V d-2)-\frac{2}{3}(d-1)(2 d-1)-(2 d-1)^{2}-(2 d-1)(V d-6 d+2)\right.\right. \\
& +2(d-1)(2 d-3)\left(\frac{I_{1}\left(\beta_{p l}\right)}{I_{0}\left(\beta_{p l}\right)}\right)^{2}+(d-1)(V d-8 d+4) \frac{I_{1}\left(\beta_{p l}\right)}{I_{0}\left(\beta_{p l}\right)} \\
& \left.+\frac{4}{3}(d-1)(d-2)\left(\frac{I_{1}\left(\beta_{p l}\right)}{I_{0}\left(\beta_{p l}\right)}\right)^{3}\right] \gamma_{2}^{6}+\left(2(d-1) \frac{I_{1}\left(\beta_{p l}\right)}{I_{0}\left(\beta_{p l}\right)}+(2 d-1)^{2}+\frac{1}{4}(V d-4 d+1)\right) \gamma_{2}^{2} \gamma_{4}^{2} \\
& +\left(8(d-1)^{2} \frac{I_{1}\left(\beta_{p l}\right)}{I_{0}\left(\beta_{p l}\right)}+(2 d-1)(V d-6 d+2)\right) \gamma_{2}^{4} \gamma_{4}+\frac{2}{3}(2 d-1)(d-1) \gamma_{2}^{3} \gamma_{6} \\
& \left.+\frac{1}{2}(2 d-1) \gamma_{2} \gamma_{4} \gamma_{6}+\frac{1}{36} \gamma_{6}^{2}\right\} \kappa^{6}
\end{aligned}
$$

where $\gamma_{2 k} \equiv\left\langle\rho^{2 k}\right\rangle_{z_{\lambda}}$.

Tests of the hopping parameter expansion

- Left: L_{ϕ} at $\lambda=0.05$ and 0.1 for $\beta=20$ compared with the $O\left(\kappa^{3}\right)$ and $O\left(\kappa^{5}\right)$ expansions
- Right: L_{ϕ} at $\lambda=0.1$ for $\beta=0.02-20$ compared with the $O\left(\kappa^{5}\right)$ expansion

The partition function in the dual representation

- The partition function can be rewritten exactly in a gauge-invariant way in terms of integer fields living on the plaquettes:

$$
\begin{gathered}
Z=\sum_{\{m\}}\left(\prod_{x, \nu<\mu} t_{m}\left(\beta_{p l}\right)\right)\left(\prod_{x, \nu} t_{m-m^{\prime}}(2 \kappa)\right), \\
t_{m}(z) \equiv I_{m}(z) / I_{0}(z), t_{m}(0)=\delta_{n, 0}
\end{gathered}
$$

The partition function in the dual representation

- The partition function can be rewritten exactly in a gauge-invariant way in terms of integer fields living on the plaquettes:

$$
Z=\sum_{\{m\}}\left(\prod_{x, \nu<\mu} t_{m}\left(\beta_{p l}\right)\right)\left(\prod_{x, \nu} t_{m-m^{\prime}}(2 \kappa)\right)
$$

$t_{m}(z) \equiv I_{m}(z) / I_{0}(z), t_{m}(0)=\delta_{n, 0}$

- The expectation value of the Polyakov loop:

$$
\langle P\rangle=\frac{1}{Z} \int \mathcal{D}\left[\phi^{\dagger}\right] \mathcal{D}[\phi] \mathcal{D}[U]\left(\prod_{n=0}^{N_{\tau}-1} U_{x^{*}+n \hat{\tau}, \hat{\tau}}\right) e^{-S}
$$

where x^{*} is a single specific spatial site

The Polyakov loop

- The Polyakov loop insertion modifies the link integrals:

$$
\int \frac{\theta_{x}}{2 \pi} e^{i\left(n-m_{r}+m_{l}+1\right) \theta_{x}}=\delta_{n, m_{r}-m_{l}-1}
$$

where the subscripts $/$ and r denote the "left" and "right" plaquette quantum numbers, respectively, to the vertical (temporal) link in question

The Polyakov loop

- The Polyakov loop insertion modifies the link integrals:

$$
\int \frac{\theta_{x}}{2 \pi} e^{i\left(n-m_{r}+m_{l}+1\right) \theta_{x}}=\delta_{n, m_{r}-m_{l}-1}
$$

where the subscripts I and r denote the "left" and "right" plaquette quantum numbers, respectively, to the vertical (temporal) link in question

- In the integer field representation the expectation value is:

$$
\langle P\rangle=\frac{1}{Z} \sum_{\{m\}}\left[\prod_{x, \nu<\mu} t_{m}\left(\beta_{p \prime}\right)\right]\left[\prod_{x, \nu} t_{m-m^{\prime}}(2 \kappa)\right]\left[\prod_{n=0}^{N_{\tau}-1} \frac{t_{m-m^{\prime}-1}(2 \kappa)}{t_{m-m^{\prime}}(2 \kappa)}\right]
$$

The Polyakov loop

- The Polyakov loop insertion modifies the link integrals:

$$
\int \frac{\theta_{x}}{2 \pi} e^{i\left(n-m_{r}+m_{l}+1\right) \theta_{x}}=\delta_{n, m_{r}-m_{l}-1},
$$

where the subscripts I and r denote the "left" and "right" plaquette quantum numbers, respectively, to the vertical (temporal) link in question

- In the integer field representation the expectation value is:

$$
\langle P\rangle=\frac{1}{Z} \sum_{\{m\}}\left[\prod_{x, \nu<\mu} t_{m}\left(\beta_{p l}\right)\right]\left[\prod_{x, \nu} t_{m-m^{\prime}}(2 \kappa)\right]\left[\prod_{n=0}^{N_{\tau}-1} \frac{t_{m-m^{\prime}-1}(2 \kappa)}{t_{m-m^{\prime}}(2 \kappa)}\right]
$$

- The Polyakov loop in terms of the new variables:

$$
P=\prod_{n=0}^{N_{\tau}-1} \frac{t_{m-m^{\prime}-1}(2 \kappa)}{t_{m-m^{\prime}}(2 \kappa)}
$$

Tensor Renormalization Group (TRG) method

- Rewrite the partition function in a tensor form

Tensor Renormalization Group (TRG) method

- Rewrite the partition function in a tensor form
- Solve by blocking and truncation in the number of states

The Polyakov loop

- Comparison TRG and MC for a range of κ and $\beta_{p /}$ values for $N_{s}=N_{\tau}=16$.

The Polyakov loop

- Comparison of TRG and MC data with fixed spatial length and various temporal lengths, $N_{s}=16, \beta_{p l}=5$ and $D_{\text {bond }}=41$

The Polyakov loop

- The Polyakov loop can be represented as the ratio of two partition functions: one with the inclusion of the static charge, and the other without:

$$
\langle P\rangle=\frac{\tilde{Z}}{Z}=\frac{\operatorname{Tr}\left[\tilde{\mathbb{T}}^{N_{\tau}}\right]}{\operatorname{Tr}\left[\mathbb{T}^{N_{\tau}}\right]}=\frac{\sum_{i=0}^{N} \tilde{\lambda}_{i}^{N_{\tau}}}{\sum_{i=0}^{N} \lambda_{i}^{N_{\tau}}}
$$

The Polyakov loop

- The Polyakov loop can be represented as the ratio of two partition functions: one with the inclusion of the static charge, and the other without:

$$
\langle P\rangle=\frac{\tilde{z}}{Z}=\frac{\operatorname{Tr}\left[\tilde{\mathbb{T}}^{N_{\tau}}\right]}{\operatorname{Tr}\left[\mathbb{T}^{N_{\tau}}\right]}=\frac{\sum_{i=0}^{N} \tilde{\lambda}_{i}^{N_{\tau}}}{\sum_{i=0}^{N} \lambda_{i}^{N_{\tau}}}
$$

- In the large N_{τ} limit the Polyakov loop expectation value is dominated by the largest eigenvalues:

$$
\log \langle P\rangle \simeq N_{\tau} \log \left(\tilde{\lambda}_{0} / \lambda_{0}\right)=-N_{\tau} \Delta E
$$

where ΔE is the energy gap between the ground state of the system with the static charge, and that without:

$$
\langle P\rangle \simeq e^{-N_{\tau} \Delta E}
$$

The energy gap

- The energy gap ΔE for various spatial lattice sizes $\kappa=1.6$, $\beta_{p l}=44$

The energy gap

- Comparison of TRG and MC data for ΔE at $\kappa=1.6$

Universal scaling

- For κ large enough (greater than the Kosterlitz-Thouless (KT) transition value) and $g^{2} N_{s}$ small enough, we expect the following scaling:

$$
\Delta E \simeq \frac{a}{N_{s}}+b g^{2} N_{s}
$$

Universal scaling

- For κ large enough (greater than the Kosterlitz-Thouless (KT) transition value) and $g^{2} N_{s}$ small enough, we expect the following scaling:

$$
\Delta E \simeq \frac{a}{N_{s}}+b g^{2} N_{s}
$$

- If we multiply this equation by N_{s}, then the right hand side depends only on $g^{2} N_{s}^{2}$

Universal scaling

- For κ large enough (greater than the Kosterlitz-Thouless (KT) transition value) and $g^{2} N_{s}$ small enough, we expect the following scaling:

$$
\Delta E \simeq \frac{a}{N_{s}}+b g^{2} N_{s}
$$

- If we multiply this equation by N_{s}, then the right hand side depends only on $g^{2} N_{s}^{2}$
- We conjecture that this scaling persists beyond the lowest order:

$$
\Delta E N_{s}=f\left(g^{2} N_{s}^{2}\right)
$$

Universal scaling

- Data collapse for the energy gap ΔE for different N_{s}

Universal scaling

- The data collapse breaks down if we increase g while keeping N_{s} fixed

Universal scaling

- The data collapse breaks down if we increase g while keeping N_{s} fixed
- For $g \gg 1$ the lowest energy state corresponds to having all plaquette quantum numbers set to zero

Universal scaling

- The data collapse breaks down if we increase g while keeping N_{s} fixed
- For $g \gg 1$ the lowest energy state corresponds to having all plaquette quantum numbers set to zero
- This is possible when the matter loop follows exactly the Polyakov loop in the opposite direction

Universal scaling

- The data collapse breaks down if we increase g while keeping N_{s} fixed
- For $g \gg 1$ the lowest energy state corresponds to having all plaquette quantum numbers set to zero
- This is possible when the matter loop follows exactly the Polyakov loop in the opposite direction
- This state contributes $\left(t_{1}(2 \kappa)\right)^{N_{\tau}}$ to the partition function, thus for large g we expect

$$
\Delta E \rightarrow-\ln \left(t_{1}(2 \kappa)\right)
$$

independent of N_{s}

The continuous-time limit

- The continuous-time limit:

$$
\kappa_{\tau}, \beta_{p l} \rightarrow \infty, \quad \kappa_{s}, a_{\tau} \rightarrow 0
$$

keeping fixed:

$$
U \equiv \frac{1}{\beta_{p / a}}=\frac{g^{2}}{a}, \quad Y \equiv \frac{1}{2 \kappa_{\tau} a}, \quad X \equiv \frac{2 \kappa_{s}}{a}
$$

The continuous-time limit

- The continuous-time limit:

$$
\kappa_{\tau}, \beta_{p l} \rightarrow \infty, \quad \kappa_{s}, a_{\tau} \rightarrow 0
$$

keeping fixed:

$$
U \equiv \frac{1}{\beta_{p / a}}=\frac{g^{2}}{a}, \quad Y \equiv \frac{1}{2 \kappa_{\tau} a}, \quad X \equiv \frac{2 \kappa_{s}}{a}
$$

- In this limit the transfer matrix is close to identity and we can expand to first order in couplings - we obtain the Hamiltonian for quantum rotors, $\hat{\theta}, \hat{L}=-i \partial / \partial \theta$ with the commutation relations:

$$
\left[\hat{L}, \mathrm{e}^{ \pm i \hat{\theta}}\right]= \pm \mathrm{e}^{ \pm i \hat{\theta}}
$$

The continuous-time limit

- The continuous-time limit:

$$
\kappa_{\tau}, \beta_{p l} \rightarrow \infty, \quad \kappa_{s}, a_{\tau} \rightarrow 0
$$

keeping fixed:

$$
U \equiv \frac{1}{\beta_{p / a}}=\frac{g^{2}}{a}, \quad Y \equiv \frac{1}{2 \kappa_{\tau} a}, \quad X \equiv \frac{2 \kappa_{s}}{a}
$$

- In this limit the transfer matrix is close to identity and we can expand to first order in couplings - we obtain the Hamiltonian for quantum rotors, $\hat{\theta}, \hat{L}=-i \partial / \partial \theta$ with the commutation relations:

$$
\left[\hat{L}, \mathrm{e}^{ \pm i \hat{\theta}}\right]= \pm \mathrm{e}^{ \pm i \hat{\theta}}
$$

- In 1403.5238 we considered a spin-1 truncation and represented this algebra with the angular momentum algebra

$$
\left[\hat{L}^{z}, \hat{L}^{ \pm}\right]= \pm \hat{L}^{ \pm}
$$

The continuous-time limit

- The three-state spin-1 Hamiltonian is then:

$$
\begin{aligned}
H & =\frac{U}{2} \sum_{i=1}^{N_{s}}\left(L_{i}^{z}\right)^{2} \\
& +\frac{Y}{2} \sum_{i}^{\prime}\left(L_{i+1}^{z}-L_{i}^{z}\right)^{2}-\frac{X}{\sqrt{2}} \sum_{i=1}^{N_{s}} L_{i}^{X}
\end{aligned}
$$

- This Hamiltonian is mapped onto the two-species Bose-Hubbard model that can be potentially quantum simulated with a "ladder" structure

Bose-Hubbard realization for the $U(1)$-Higgs model

Abelian-Higgs and BH Spectra for $\mathrm{L}=4 ; \tilde{X} / \tilde{U_{P}}=\tilde{Y} / \tilde{U}_{P}=0.1$

- Comparison of the energy spectra for two-site (left) and four-site (right) system calculated in the Abelian-Higgs model and in the spin-1 approximation

Improvements

- In order to go beyond the spin-1 approximation we need the following modification:

$$
L^{x} \rightarrow U^{x}=\frac{1}{2}\left(U^{+}+U^{-}\right)
$$

where

$$
U^{ \pm}|m\rangle=|m \pm 1\rangle
$$

Improvements

- In order to go beyond the spin-1 approximation we need the following modification:

$$
L^{x} \quad \rightarrow \quad U^{x}=\frac{1}{2}\left(U^{+}+U^{-}\right)
$$

where

$$
U^{ \pm}|m\rangle=|m \pm 1\rangle
$$

- The "spin- n " Hamiltonian is then:

$$
\begin{aligned}
H & =\frac{U}{2} \sum_{i=1}^{N_{s}}\left(L_{i}^{z}\right)^{2} \\
& +\frac{Y}{2} \sum_{i}^{\prime}\left(L_{i+1}^{z}-L_{i}^{z}\right)^{2}-X \sum_{i=1}^{N_{s}} U_{i}^{X}
\end{aligned}
$$

The Polyakov loop insertion

- We take the continuous-time limit for the P operator:

$$
P \rightarrow 1+\frac{1}{2\left(2 \kappa_{\tau}\right)}\left(2\left(m-m^{\prime}\right)-1\right)+\mathcal{O}\left(\left(2 \kappa_{\tau}\right)^{-2}\right)
$$

The Polyakov loop insertion

- We take the continuous-time limit for the P operator:

$$
P \rightarrow 1+\frac{1}{2\left(2 \kappa_{\tau}\right)}\left(2\left(m-m^{\prime}\right)-1\right)+\mathcal{O}\left(\left(2 \kappa_{\tau}\right)^{-2}\right)
$$

- This generates an additional term in the quantum Hamiltonian (located at a single site i^{*})

$$
\tilde{H}=H-\frac{Y}{2}\left(2\left(L_{i^{*}+1}^{z}-L_{i^{*}}^{z}\right)-1\right)
$$

The Polyakov loop insertion

- We take the continuous-time limit for the P operator:

$$
P \rightarrow 1+\frac{1}{2\left(2 \kappa_{\tau}\right)}\left(2\left(m-m^{\prime}\right)-1\right)+\mathcal{O}\left(\left(2 \kappa_{\tau}\right)^{-2}\right)
$$

- This generates an additional term in the quantum Hamiltonian (located at a single site i^{*})

$$
\tilde{H}=H-\frac{Y}{2}\left(2\left(L_{i^{*}+1}^{z}-L_{i^{*}}^{z}\right)-1\right)
$$

- To avoid boundary effects the Polyakov loop is inserted in the middle of the spatial lattice:

$$
\begin{aligned}
\tilde{H} & =\frac{U}{2} \sum_{i=1}^{N_{s}}\left(L_{i}^{z}\right)^{2}+\frac{Y}{2} \sum_{i \neq \frac{N_{s}}{2}}^{\prime}\left(L_{i+1}^{z}-L_{i}^{z}\right)^{2} \\
& +\frac{Y}{2}\left(L_{\frac{N_{s}}{2}+1}^{z}-L_{\frac{N_{s}}{2}}^{z}-1\right)^{2}-X \sum_{i=1}^{N_{s}} U_{i}^{X}
\end{aligned}
$$

Polyakov loop vs boundary conditions

a)

b)

0	0	1	1	1
0	1	1	1	1
0	0	0	1	1
0	0	1	1	1
0	0	1	1	1

- Insertion of the Polyakov loop probes the response of the system to the addition of a single static charge

Polyakov loop vs boundary conditions

a)

b)

- Insertion of the Polyakov loop probes the response of the system to the addition of a single static charge
- Alternatively, one can probe $Q \neq 0$ sectors by changing the boundary conditions (similar to subjecting the system to an external electric field)

Polyakov loop vs boundary conditions

- Data collapse for the energy gap between 01BC and 0BC systems

Polyakov loop vs boundary conditions

- We can similarly introduce the 01 boundary conditions in the continuous time limit

Polyakov loop vs boundary conditions

- We can similarly introduce the 01 boundary conditions in the continuous time limit
- The Hamiltonian is modified to

$$
\begin{aligned}
H_{10} & =\frac{U}{2} \sum_{i=1}^{N_{s}}\left(L_{i}^{z}\right)^{2}+\frac{Y}{2} \sum_{i=1}^{N_{s}-1}\left(L_{i+1}^{z}-L_{i}^{z}\right)^{2} \\
& +\frac{Y}{2}\left(L_{N_{s}}^{z}\right)^{2}+\frac{Y}{2}\left(L_{1}^{z}-1\right)^{2}-X \sum_{i=1}^{N_{s}} U_{i}^{\chi}
\end{aligned}
$$

Polyakov loop vs boundary conditions

- Data collapse for the energy gap between 01BC and 0BC systems in the continuous-time limit

Quantum simulation

- Multi-leg ladder implementation for spin-2

Quantum simulation

- Multi-leg ladder implementation for spin-2
- The atoms hop along the rungs but not the legs of the ladder

Quantum simulation

- Multi-leg ladder implementation for spin-2
- The atoms hop along the rungs but not the legs of the ladder
- Coupling between the atoms in different rungs is implemented via an interaction V

Conclusion

- Analog quantum simulations have potential to become useful for studying models relevant for particle and nuclear physics

[^3]
Conclusion

- Analog quantum simulations have potential to become useful for studying models relevant for particle and nuclear physics
- Cold atoms in optical lattices offer a very promising direction

[^4]
Conclusion

- Analog quantum simulations have potential to become useful for studying models relevant for particle and nuclear physics
- Cold atoms in optical lattices offer a very promising direction
- Lattice gauge theory in a good position to be "translated" to quantum simulators, canonical quantization needs to be better developed

Conclusion

- Analog quantum simulations have potential to become useful for studying models relevant for particle and nuclear physics
- Cold atoms in optical lattices offer a very promising direction
- Lattice gauge theory in a good position to be "translated" to quantum simulators, canonical quantization needs to be better developed
- ($1+1$)D Abelian-Higgs model has been studied with MC and TRG methods and a (manifestly gauge invariant) mapping has been developed to a Hamiltonian formulation that may be quantum simulated in optical lattices

Conclusion

- Analog quantum simulations have potential to become useful for studying models relevant for particle and nuclear physics
- Cold atoms in optical lattices offer a very promising direction
- Lattice gauge theory in a good position to be "translated" to quantum simulators, canonical quantization needs to be better developed
- (1+1)D Abelian-Higgs model has been studied with MC and TRG methods and a (manifestly gauge invariant) mapping has been developed to a Hamiltonian formulation that may be quantum simulated in optical lattices
- The primary object of interest in our recent study ${ }^{4}$ is the Polyakov loop for two reasons: a) it can be related to special boundary conditions, b) it can be translated to the energy gap

Conclusion

- Analog quantum simulations have potential to become useful for studying models relevant for particle and nuclear physics
- Cold atoms in optical lattices offer a very promising direction
- Lattice gauge theory in a good position to be "translated" to quantum simulators, canonical quantization needs to be better developed
- (1+1)D Abelian-Higgs model has been studied with MC and TRG methods and a (manifestly gauge invariant) mapping has been developed to a Hamiltonian formulation that may be quantum simulated in optical lattices
- The primary object of interest in our recent study ${ }^{4}$ is the Polyakov loop for two reasons: a) it can be related to special boundary conditions, b) it can be translated to the energy gap
- Both of these features are important for control and measurement in optical lattice simulators

[^5]
[^0]: ${ }^{2}$ Picture courtesy of JILA

[^1]: ${ }^{2}$ Picture courtesy of JILA

[^2]: ${ }^{2}$ Picture courtesy of JILA

[^3]: ${ }^{4} 1803.11166,1807.09186$

[^4]: ${ }^{4} 1803.11166,1807.09186$

[^5]: ${ }^{4} 1803.11166,1807.09186$

