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» Properties of quark-gluon plasma
» Experiments: RHIC, LHC, FAIR, NICA
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Quantum Chromodynamics
» The QCD Lagrangian:

‘CgCD = Egluon+£:fermlon
= *7”:“1/( Z ¢f < af + mf&xﬂ) T/J?(X)

f=u,d,s...
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Quantum Chromodynamics
» The QCD Lagrangian:

LgCD — [’gluon—l_‘cfermlon
v a O E
= GRS 00 (B8 meds) v

f=u,d,s...

» The grand canonical partition function:

Z(T,V,ji) /HDA [I DveDs e =TV

f=u,d,s...

» The expectation value of a physical observable O:

_ 1 70 o—Se(TV.ji)
(0) = Z(T7V7ﬁ)/1;[DA“1;[D1/JwafOe
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Strong coupling constant

» If there is a small parameter (coupling constant) — we can write
(O) as a series expansion (e.g. works in QED, oo ~ 1/137) and
evaluate it order by order
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Strong coupling constant

» If there is a small parameter (coupling constant) — we can write
(O) as a series expansion (e.g. works in QED, oo ~ 1/137) and

evaluate it order by order

> In QCD the coupling constant is large in the region of interest
(i.e. on the energy scales of few hundred MeV)
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Lattice gauge theory
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Lattice gauge theory
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Lattice gauge theory
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» Lattice gauge theory! — a non-perturbative regularization scheme

'Wilson (1974)
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Lattice gauge theory

R UCR TS N

\‘
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Le U&y
T S U N N NS R () S S S NS

» Lattice gauge theory! — a non-perturbative regularization scheme

» Discrete space-time, gauge invariant action

'Wilson (1974)
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Markov Chain Monte Carlo

» Evaluate the path integrals stochastically using Markov Chain
Monte Carlo (MCMC) method
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» For many problems MCMC typically scales polynomially with

volume
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Markov Chain Monte Carlo

» Evaluate the path integrals stochastically using Markov Chain
Monte Carlo (MCMC) method

» For many problems MCMC typically scales polynomially with
volume
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Markov Chain Monte Carlo

» Evaluate the path integrals stochastically using Markov Chain
Monte Carlo (MCMC) method

» For many problems MCMC typically scales polynomially with
volume

» There is a class of problems where MCMC breaks down (=
requires exponential resources, often due to the “sign” problem):

QCD at finite density

Real-time evolution

Spectral functions and transport properties

Scattering

Parton distribution functions

...and many more!
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Polyakov loop

» The Polyakov loop:

1 Ny—1
P = ﬁcﬁ H Uo(xo, X)

x0=0
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Polyakov loop

» The Polyakov loop:

1 Ny—1
P = ﬁcﬂ H Uo(xo, X)

x0=0

» The order parameter for the confinement-deconfinement
transition in pure gauge theory, related to the center symmetry
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Polyakov loop

» The Polyakov loop:

1 Ny—1
P = ﬁcﬂ H Uo(xo, X)
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» The order parameter for the confinement-deconfinement
transition in pure gauge theory, related to the center symmetry

> Related to the free energy of a static quark anti-quark pair

(P)(T) = exp(—Foo(T)/(2T))
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Polyakov loop

» The Polyakov loop:

1 Ny—1
P = ﬁcﬂ H Uo(xo, X)

x0=0
» The order parameter for the confinement-deconfinement

transition in pure gauge theory, related to the center symmetry

> Related to the free energy of a static quark anti-quark pair

(P)(T) = exp(—Fso(T)/(2T))
» Not an order parameter in full QCD
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Quantum simulation

A. Bazavov (MSU) Quantum Entanglement 2018 September 11, 2018 11 / 41



Quantum simulation

» Technology: Ultra-cold atoms trapped in optical lattices (counter
propagating laser beams)?

2Picture courtesy of JILA
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Quantum simulation

» Technology: Ultra-cold atoms trapped in optical lattices (counter
propagating laser beams)?

» Possibility of tunable interactions

» Goal: Quantum simulator for lattice gauge theory

2Picture courtesy of JILA
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Analog quantum simulation of
(1+1)D Abelian-Higgs model
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(14+1)D Abelian-Higgs model

The partition function:
7= / D¢t DyDUe™,
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The partition function:
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(14+1)D Abelian-Higgs model

Limiting cases:

» k=0: U(1) pure gauge theory
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(14+1)D Abelian-Higgs model

Limiting cases:
» k=0: U(1) pure gauge theory
> \ < 00,8 = o0 ¢* theory
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(14+1)D Abelian-Higgs model

Limiting cases:
» k=0: U(1) pure gauge theory
> \ < 00,8 = o0 ¢* theory

» A =00, =00: O(2) model, Kosterlitz-Thouless transition
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(14+1)D Abelian-Higgs model

» In the hopping part of the action S, we can separate the
compact and non-compact variables

Sh=— 2k:|ox|dxi2] Z cos(Ox s — Ox + Axz — i)

—  2Ks|@x|dx+3] Z cos(Ox+s — Ox + Ax3)
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(14+1)D Abelian-Higgs model

» In the hopping part of the action S, we can separate the
compact and non-compact variables

Sh=— 2k:|ox|dxi2] Z cos(Ox s — Ox + Axz — i)

- 2/‘is|¢x| ’¢X+§‘ Z COS(9X+§ - ex + Ax,§)

» and then Fourier transform the Boltzmann weight, i.e.
exp[2fir | x| Pxir] COS(Oxt7 — Ox + Axp — ipt)]

o0
= Z In(267|Px||dx47) explin(Ox1r — Ox + Axp — ip)]

n=—0o0
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(14+1)D Abelian-Higgs model

» The effective action for the gauge and hopping part

e e = Z [H ImD(Bp/)H <Inx,g(2“5|¢><|‘¢x—i-§|)

{mg} L O x

X /nx,-?— (2/47- |¢x | |¢x++ |) exp(MnX7,?)> :|
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(14+1)D Abelian-Higgs model

» The effective action for the gauge and hopping part

e e = Z [H ImD(Bp/)H <Inx,g(2/45|¢><|‘¢x—f—§|)

{mg} L O

X /nx,+ (2/47- |¢x | |¢>x+$ |) exp(unx7,?)> :|

> Using the hopping parameter expansion for Kk = ks = k; and
with My = Loy

Seff = Y (—FﬁMXMy + Zm“(MXMy)?)
(xy)

4 Il(ﬁp/)

/O(ﬁp/)

> MMM M, + O(x°)
O(xyzw)

Z:/D¢TD¢DUe5 Z/DMeseff(M)SA(M)
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Hopping parameter expansion

» The hopping parameter expansion

Zﬁ),)\
Zx

3

1+ Vdy3r?

h(Bpr)
lo(Bp1)

1 2 »
Vd{[g(Vd— 1)(Vd — 2) — g(d— 1)(2d — 1) — (2d — 1)> — (2d — 1)(Vd — 6d + 2)

1 4 2 1o 4
vd E(Vd74d+1)+(d71) ’y2+(2d71)72'y4+1’y4 K

/1(Bp/))2 d— 1)(Vd — 8d h(Bpr)
o (Bpr) o 4 B

2(d — 1)(2d — 3)( e
pl

4 o[ 1B 3] 6 1 1(Ben) o2 Lo 2.2
(d 1)(d — 2) ( /0(5p )) Y + (2(d 1) (Bp/) +(2d —1)° + 2 (Vd — 4d + 1))')/2’)/4
(Bp1)

8(d — 12 15e1)
(8( ) 5

+(2d = 1)(Vd — 6d +2))v3va + *(2d —1)(d = D)3
Io( p/)

*(Zd = Dy2vave + ivg} x®
2 36

where v = (p?) 2,

3Heitger (1997)
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Tests of the hopping parameter expansion
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> Left: Ly at A =0.05 and 0.1 for 3 = 20 compared with the
O(k3) and O(k®) expansions

» Right: Ly at A =0.1 for 3 = 0.02 — 20 compared with the
O(x°) expansion
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The partition function in the dual representation

» The partition function can be rewritten exactly in a
gauge-invariant way in terms of integer fields living on the
plaquettes:

=> ( 11 tm(ﬁp/)) (H tm—mf(%)) ,

{m} X, v<[L

tm(2) = Im(2)/I0(2), tm(0) = dno0
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The partition function in the dual representation

» The partition function can be rewritten exactly in a
gauge-invariant way in terms of integer fields living on the
plaquettes:

z=%" ( 11 tm(ﬁp/)> (g fm—m'(%)) )

{m} X, v<[L

tm(2) = Im(2)/1I0(2), tm(0) = 0no
» The expectation value of the Polyakov loop:

Ny—1
1 T
_ { a | eSS
<'D> - 7 /D[¢ ]D[¢]D[U] ( 1—[0 UX*+nT,T> e
where x* is a single specific spatial site
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The Polyakov loop

» The Polyakov loop insertion modifies the link integrals:

/9><ei(n—m,+m/+1)6’x -5
= %,my—m;—1,

27

where the subscripts / and r denote the “left” and “right”

plaquette quantum numbers, respectively, to the vertical

(temporal) link in question
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The Polyakov loop

» The Polyakov loop insertion modifies the link integrals:
0, -
/27XTel(n_mr+m/+1)0X = On,m,—m—1,
where the subscripts / and r denote the “left” and “right”

plaquette quantum numbers, respectively, to the vertical
(temporal) link in question

> In the integer field representation the expectation value is:

Ny—1
CEEDR|| tm(ﬁp,)] [H tm_m/(zm)] [H “’7”’1(2“)]

{m} Lev<p n=0 tm—m (2K)
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The Polyakov loop

» The Polyakov loop insertion modifies the link integrals:
eixei(n—m,—&-m/—&—l)ex -5
o = %,my—m;—1,
where the subscripts / and r denote the “left” and “right”
plaquette quantum numbers, respectively, to the vertical
(temporal) link in question
> In the integer field representation the expectation value is:

1 N1 tmfm’71(2’%)
(P) = ?Z H tm(Bpr) Ht'"_’"/(zﬁ) H m

{m} Lev<p n=0

» The Polyakov loop in terms of the new variables:

N:—1
p— H tm—m’—l(z"{)
0 tm_m/(2l£)
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Tensor Renormalization Group (TRG) method

B AT B
Als) Als)
B AT B

> Rewrite the partition function in a tensor form
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Tensor Renormalization Group (TRG) method

B AT B
Als) Als)
B AT B

> Rewrite the partition function in a tensor form
» Solve by blocking and truncation in the number of states
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The Polyakov loop
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» Comparison TRG and MC for a range of x and (3, values for
Ns = N, = 16.
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The Polyakov loop
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» Comparison of TRG and MC data with fixed spatial length and
various temporal lengths, Ns = 16, 8,/ =5 and Dpong = 41
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The Polyakov loop

» The Polyakov loop can be represented as the ratio of two
partition functions: one with the inclusion of the static charge,
and the other without:

<P> _ g _ Tr[r]TNT] _ ZINZO S\fVT
T2 T S
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The Polyakov loop

» The Polyakov loop can be represented as the ratio of two
partition functions: one with the inclusion of the static charge,
and the other without:

<P> _ g _ Tr[r]TNT] _ ZINZO S\fVT
Tz T S

> In the large N, limit the Polyakov loop expectation value is
dominated by the largest eigenvalues:

log(P) ~ N, log(Ao/Xo) = —N,AE

where AE is the energy gap between the ground state of the
system with the static charge, and that without:

(P) ~ e N-AE
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The energy gap
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> The energy gap AE for various spatial lattice sizes k = 1.6,
Bp1 = 44
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The energy gap
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» Comparison of TRG and MC data for AE at kK = 1.6
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Universal scaling

» For k large enough (greater than the Kosterlitz-Thouless (KT)
transition value) and g?Ns small enough, we expect the following
scaling:

AE~ 2 { pg2N
N S

S
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> If we multiply this equation by Ns, then the right hand side
depends only on g?N?
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Universal scaling

» For k large enough (greater than the Kosterlitz-Thouless (KT)
transition value) and g?Ns small enough, we expect the following
scaling:

AE~ 2 { pg2N
N S

S

> If we multiply this equation by Ns, then the right hand side
depends only on g?N?
> We conjecture that this scaling persists beyond the lowest order:

AEN, = f(g>N?)

A. Bazavov (MSU) Quantum Entanglement 2018 September 11, 2018 28 / 41



Universal scaling
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» Data collapse for the energy gap AE for different N
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Universal scaling

> The data collapse breaks down if we increase g while keeping N
fixed
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fixed

> For g > 1 the lowest energy state corresponds to having all
plaquette quantum numbers set to zero
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Universal scaling
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> For g > 1 the lowest energy state corresponds to having all
plaquette quantum numbers set to zero

» This is possible when the matter loop follows exactly the
Polyakov loop in the opposite direction
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Universal scaling

> The data collapse breaks down if we increase g while keeping N
fixed

> For g > 1 the lowest energy state corresponds to having all
plaquette quantum numbers set to zero

» This is possible when the matter loop follows exactly the
Polyakov loop in the opposite direction

» This state contributes (t1(2x))"" to the partition function, thus
for large g we expect

AE — —In(t:(2x)),

independent of N,
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The continuous-time limit
» The continuous-time limit:
K/T?ﬁp/ - 007 K’Sa ar — 0

keeping fixed:

1
— ==, Y=
Bpra a 2Kk a a

x
Il
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The continuous-time limit
> The continuous-time limit:
Ky Bpl — 00, Ks,ar — 0
keeping fixed:
1 g2 1 2k

Bpa a’ 2Kra’ a

> In this limit the transfer matrix is close to identity and we can
expand to first order in couplings — we obtain the Hamiltonian for
quantum rotors, 0, L = —i0/06 with the commutation relations:
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> The continuous-time limit:
Ky Bpl — 00, Ks,ar — 0
keeping fixed:
1 g2 1 2k

Bpa a’ 2Kra’ a

> In this limit the transfer matrix is close to identity and we can
expand to first order in couplings — we obtain the Hamiltonian for
quantum rotors, 0, L = —i0/06 with the commutation relations:

L, e:l:ié] — fotib

» In 1403.5238 we considered a spin-1 truncation and represented
this algebra with the angular momentum algebra

[[7,[*] = +1*
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The continuous-time limit

> The three-state spin-1 Hamiltonian is then:
N.
U z\2
=7 > (L)
i=1
+ Z fra = Z Li

» This Hamiltonian is mapped onto the two-species Bose-Hubbard
model that can be potentially quantum simulated with a
“ladder” structure
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Bose-Hubbard realization for the U(1)-Higgs model

Abelian-Higgs and BH Spectra for L=2; X/Up=Y/Up=0.1 Abelian-Higgs and BH Spectra for L=4; X/Up=Y/Up=0.1
— Abelian-Higgs BH model
Abelian-Higgs BH model 3. —
1.3 —
2.5 -1
B 7 2 -
0.8~ 7 15 1
& &
4 L i
- . 1.+ -1
0.3}~ N 05} N
- — 0.
-0.2 -0.2

» Comparison of the energy spectra for two-site (left) and four-site
(right) system calculated in the Abelian-Higgs model and in the
spin-1 approximation
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Improvements

> In order to go beyond the spin-1 approximation we need the
following modification:

1
LX — U)(:E((ij‘i‘(ji)7

where
Ut |m) = |m+1)
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Improvements

> In order to go beyond the spin-1 approximation we need the
following modification:

1
> — UX=§(U++U*),

where
Ut |m) = |m+1)

» The “spin-n" Hamiltonian is then:

UL
_ z\2
H=3 1)

Y «— Ns
oY W - R - XY U
i i=1
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The Polyakov loop insertion

> We take the continuous-time limit for the P operator:

P14+ (2(m = m') = 1) + O((2-) %)

1
2(2k,)
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The Polyakov loop insertion

> We take the continuous-time limit for the P operator:

P14+ (2(m = m') = 1) + O((2-) %)

1
2(2k,)

» This generates an additional term in the quantum Hamiltonian
(located at a single site i*)

H=H 2@l 15)-1)

» To avoid boundary effects the Polyakov loop is inserted in the
middle of the spatial lattice:

LUy
=5 > (L) + > Z L — LF)?
i—1

LY
2

Ns
z 2 X
(Ns+1 %_1) _XZUI
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Polyakov loop vs boundary conditions

a) b)
0 0 1 1 0 0 0 1 1 1
0 1 1 1,0 0 1 1 1 1N
0 0 0 1 0 0 0 0 1 1/
. 0 0 1 1 0 0 0 1 1 1/
0 0 1 1 0 0 0 1 1 1
X=Xx" a
X

> Insertion of the Polyakov loop probes the response of the system
to the addition of a single static charge
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Polyakov loop vs boundary conditions

a) b)
0 0 1 1 0 0 0 1 1 1
0 1 1 1 0 0 1 1 1 1
0 0 0 1 0 0 0 0 1 1/
. 0 0 1 1 0 0 0 1 1 1/
0 0 1 1 0 0 0 1 1 1
X=x* a
X

> Insertion of the Polyakov loop probes the response of the system
to the addition of a single static charge

> Alternatively, one can probe @ # 0 sectors by changing the
boundary conditions (similar to subjecting the system to an
external electric field)
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Polyakov loop vs boundary conditions
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> Data collapse for the energy gap between 01BC and OBC systems
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Polyakov loop vs boundary conditions

> We can similarly introduce the 01 boundary conditions in the
continuous time limit
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Polyakov loop vs boundary conditions

> We can similarly introduce the 01 boundary conditions in the
continuous time limit

» The Hamiltonian is modified to

TRC y Mol
Hio = > Z(Lf)z TS Z( fo— LF)?

i=1 i=1

N
Y V4 Y zZ : X
+§( Ns)2+§(L1 —1)2—XZ Ui
i=1

A. Bazavov (MSU) Quantum Entanglement 2018 September 11, 2018 38 /41



Polyakov loop vs boundary conditions

4.5 — : : : : :
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» Data collapse for the energy gap between 01BC and 0BC
systems in the continuous-time limit
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Quantum simulation

L

> Multi-leg ladder implementation for spin-2
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Quantum simulation

> Multi-leg ladder implementation for spin-2
» The atoms hop along the rungs but not the legs of the ladder

» Coupling between the atoms in different rungs is implemented
via an interaction V
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Conclusion

» Analog quantum simulations have potential to become useful for
studying models relevant for particle and nuclear physics

#1803.11166, 1807.09186
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Conclusion

» Analog quantum simulations have potential to become useful for
studying models relevant for particle and nuclear physics

» Cold atoms in optical lattices offer a very promising direction

> Lattice gauge theory in a good position to be “translated” to
quantum simulators, canonical quantization needs to be better
developed

» (14+1)D Abelian-Higgs model has been studied with MC and
TRG methods and a (manifestly gauge invariant) mapping has
been developed to a Hamiltonian formulation that may be
quantum simulated in optical lattices

» The primary object of interest in our recent study? is the
Polyakov loop for two reasons: a) it can be related to special
boundary conditions, b) it can be translated to the energy gap

» Both of these features are important for control and
measurement in optical lattice simulators

41803.11166, 1807.09186
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