Maximal Entanglement in High Energy Physics

Alba Cervera-Lierta
Barcelona Supercomputing Center
Universitat de Barcelona

September 11, 2018
Quantum Entanglement at Collider Energies, CFNS Stony Brook

[^0]
Outline

1. Motivation
2. Maximal Entanglement in QED
3. MaxEnt and gauge symmetry
4. MaxEnt in weak interactions
5. Conclusions

Motivation

Q1 paradigm

Quantum Information is bringing new insights:

$$
H|\psi\rangle=E|\psi\rangle
$$

- Traditional emphasis on operators $\rightarrow H$
- QI emphasis on states $\rightarrow|\psi\rangle$

Example: QPT

Example: Quantum Phase Transitions

H

$|\psi\rangle$

Criticality,
RG flows on coupling constants, Conformal Symmetry,...

> Scaling of entropy, RG flows on states, Distribution of entanglement: MERA,...

Example: QPT

Entanglement is maximal at Quantum Phase Transition

$$
H_{Q I}=\sum_{i} \sigma_{i}^{x} \sigma_{i+1}^{x}+\lambda \sigma_{i}^{z}
$$

$\lambda \rightarrow 1 \Rightarrow$ Max Entropy $S \Rightarrow$ Max Entanglement \Rightarrow Conformal Symmetry

Entropy Scaling

- Von Neumann Entropy $\rho_{A}=\operatorname{Tr}_{B}|\psi\rangle_{A B}\langle\psi|, S\left(\rho_{A}\right)=-\operatorname{Tr}_{A} \rho_{A} \log \rho_{A}$
- Fixed points: scaling with block size $L \quad S\left(\rho_{A}\right)=\frac{c}{3} \log L \ll L^{1}$

$$
S \sim n \quad \text { Random states, QMA problems, }
$$

Local translational invariant higher d
$S \sim .8858 n \quad$ Prime state
$S \sim n^{\frac{d-1}{d}} \quad$ Area law in d-dimensions
$S \sim \frac{c}{3} \log n \quad$ Critical scaling in $d=1$
$S \sim \log (\xi)=c t \quad$ Finitely correlated states away from criticality

[^1]
Frustration

What is the most entangled spin chain?

> homogeneous and nearest neighbour

Spin $\frac{1}{2}$ numerical evidence sets max entanglement along the conformal line ${ }^{2}$

$$
H=\sum_{i} \sigma_{i}^{x} \sigma_{i+1}^{x}+\sigma_{i}^{y} \sigma_{i+1}^{y}+\Delta \sigma_{i}^{z} \sigma_{i+1}^{z}
$$

$$
\begin{gathered}
\Delta \rightarrow-1^{+} \Rightarrow S \sim \frac{1}{2} \log (n+1) \\
\text { Not CFT! }
\end{gathered}
$$

Frustration as a limit of conformal symmetry

[^2]Maximal Entanglement in QED

Quantifying entanglement

Focus

Two-particle scattering processes at tree level
Entanglement of helicity degrees of freedom

$$
|\psi\rangle_{\text {final }}=\alpha|00\rangle+\beta|01\rangle+\gamma|10\rangle+\delta|11\rangle
$$

assuming $|0\rangle,|1\rangle$ helicity or polarization states.

$$
|\alpha|^{2}+|\beta|^{2}+|\gamma|^{2}+|\delta|^{2}=1
$$

Figure of merit to quantify entanglement: concurrence

$$
\Delta=|\alpha \delta-\beta \gamma|
$$

by construction, $0 \leq \Delta \leq 1$.

Question

Can a product state become entangled?

Generation of entanglement: s channel

$$
j_{s s^{\prime}}^{\mu}=e \bar{v}^{\bar{s}^{\prime}}\left(p^{\prime}\right) \gamma^{\mu} u^{s}(p)
$$

Process: $e^{+} e^{-} \rightarrow \mu^{+} \mu^{-}$at high energy
Incoming:

$$
\begin{aligned}
& j_{L L}^{\mu}=2 e p_{0}(0,1, i, 0) \\
& j_{L R}^{\mu}=2 e p_{0}(0,1,-i, 0)
\end{aligned}
$$

$$
|R L\rangle \rightarrow(1+\cos \theta)|R L\rangle+(-1+\cos \theta)|L R\rangle
$$

$$
\theta=\pi / 2 \rightarrow \Delta=1
$$

Generation of entanglement: indistinguishability

Process: $e^{-} e^{-} \rightarrow e^{-} e^{-}$at high energy

$$
\begin{array}{ll}
\mathcal{M}(|R L\rangle \rightarrow|R L\rangle)=-2 e^{2} \frac{u}{t} & \mathcal{M}(|R L\rangle \rightarrow|R L\rangle)=0 \\
\mathcal{M}(|R L\rangle \rightarrow|L R\rangle)=0 & \mathcal{M}(|R L\rangle \rightarrow|L R\rangle)=-2 e^{2} \frac{t}{u}
\end{array}
$$

$$
\begin{aligned}
& |R L\rangle \rightarrow \frac{u}{t}|R L\rangle-\frac{t}{u}|L R\rangle \\
& \quad t=u(\theta=\pi / 2) \rightarrow \Delta=1
\end{aligned}
$$

Generation of entanglement: indistinguishability

Process: $e^{-} e^{-} \rightarrow e^{-} e^{-}$at any energy

$$
\begin{gathered}
\Delta_{|R L\rangle}=\frac{2 t u\left(t u+m^{2} \frac{(t-u)^{2}}{t+u}\right)}{2 m^{2}(t-u)^{2}\left(2 m^{2}-2(t+u)+\frac{t u}{t+u}\right)+\left(t^{4}+u^{4}\right)} \stackrel{t=u}{ } 1 \\
\Delta_{|R R\rangle} \xrightarrow{E \ll m, t=u} 1+\mathcal{O}\left(p^{2} / m^{2}\right)
\end{gathered}
$$

QED interaction can generate maximal entanglement in almost all processes and at different energy regimes.

Is this a property of nature interactions?

MaxEnt and gauge symmetry

Could a symmetry emerge from a Maximum Entanglement Principle

?

It from bit philosophy by J. A. Wheeler:
"All things physical are information-theoretic in origin"

MaxEnt principle

MaxEnt principle

"Nature is such that maximally entangled states exist"

Max Entanglement $=$ Max Entropy $=$ Max Surprise $=$ NO Local Realism
MaxEnt Principle $=$ Nature cannot be described by classical physics
Bell Inequalities will be violated

Test: QED coupling

QED Lagrangian at tree level (high-energy limit, $m=0$):

$$
\begin{array}{ccc}
\text { free fermions } & \text { free photons } & \text { interaction term } \\
\mathcal{L}=\begin{array}{l}
i \bar{\psi} \gamma^{\mu} \partial_{\mu} \psi+ \\
\\
\text { Dirac eq. }
\end{array} \frac{1}{4} F_{\mu \nu} F^{\mu \nu}+\quad-e A_{\mu} \bar{\psi} G^{\mu} \psi \\
\text { Maxwell eq. }
\end{array}
$$

$G^{\mu}: 4 \times 4$ arbitrary matrices
Gauge invariance: $G^{\mu}=\gamma^{\mu}$
Which are the couplings, G^{μ}, that generate MaxEnt?

Unconstrained QED

1. In general, G^{μ} may not be Lorentz invariant. Expand in a basis of 16 matrices:

$$
G^{\mu}=a^{\mu} \mathbb{I}+a^{\mu \nu} \gamma_{\nu}+i a^{\mu 5} \gamma^{5}+a^{\mu \nu 5} \gamma^{5} \gamma_{\nu}+a^{\mu \nu \rho}\left[\gamma_{\nu}, \gamma_{\rho}\right]
$$

2. Assuming conservation of \mathcal{P}, \mathcal{T} and \mathcal{C} symmetries:

$$
G^{\mu}=a^{\mu \nu} \gamma^{\nu} \quad a_{\mu \nu} \in \mathbb{R} \quad a_{0 i}=a_{i 0}=0
$$

3. Computation of amplitudes of all tree-level processes:

$$
\mathcal{M}_{\mid \text {initial }|\rightarrow| \text { final }| \rangle}=f\left(\theta, a_{\mu \nu}\right)
$$

Unconstrained QED

Constrain G^{μ} imposing MaxEnt in ALL tree level processes

$$
\max _{a^{\mu \nu}}\left\{\Delta_{\text {Bhabha }}, \Delta_{\text {Compton }}, \Delta_{\text {pair annhilation }}, \Delta_{\text {Moller }}, \ldots\right\}
$$

Each process will deliver different kind of MaxEnt at different angles
\rightarrow Choose optimal settings
(Logic: Bell Ineq. seek to discard classical physics using optimal settings)

Unconstrained QED

$e^{-} \mu^{-} \rightarrow e^{-} \mu^{-}$

$$
\begin{aligned}
\mathcal{M}_{|R L\rangle \rightarrow|R R\rangle} & =0 \\
\mathcal{M}_{|R L\rangle \rightarrow|R L\rangle} & =f(a) \\
\mathcal{M}_{|R L\rangle \rightarrow|L R\rangle} & =0 \\
\mathcal{M}_{|R L\rangle \rightarrow|L L\rangle} & =0
\end{aligned}
$$

No entanglement can be generated!
No constraints emerge from this process

Unconstrained QED

Amplitudes quadratic in a's:

$$
\begin{aligned}
\mathcal{M}_{|R L\rangle \rightarrow|R L\rangle} & =\left(-a_{i 2}^{2}-a_{i 1}^{2} \cos \theta+a_{i 1} a_{i 3} \sin \theta\right)+i\left(a_{i 1} a_{i 2}(1-\cos \theta)+a_{i 2} a_{i 3} \sin \theta\right) \\
\mathcal{M}_{|R L\rangle \rightarrow|L R\rangle} & =\left(-a_{i 2}^{2}+a_{i 1}^{2} \cos \theta-a_{i 1} a_{i 3} \sin \theta\right)+i\left(a_{i 1} a_{i 2}(1+\cos \theta)-a_{i 2} a_{i 3} \sin \theta\right) \\
\mathcal{M}_{|R L\rangle \rightarrow|R R\rangle} & =\mathcal{M}_{|R L\rangle \rightarrow|L L\rangle}=0
\end{aligned}
$$

Arbitrary angle dependent solutions are discarded by other processes
MaxEnt

$$
\begin{array}{llc}
\theta=\pi / 2 \\
\Delta=1
\end{array} \quad \Longrightarrow \quad \begin{gathered}
A=a a^{T} \geq 0 \\
A_{22} A_{13}-A_{12} A_{23}=0
\end{gathered}
$$

QED

$$
a_{i j}=\left\{\begin{array}{l}
0 \forall i \neq j \\
1 \forall i=j
\end{array} \quad \Longrightarrow \quad A_{i j}=\left\{\begin{array}{l}
0 \forall i \neq j \\
1 \forall i=j
\end{array}\right.\right.
$$

MaxEnt consistency

MaxEnt is well defined for a given process since it is a quadratic maximization, but

Is this consistent?
Yes
Does MaxEnt pull in different directions depending on the process?
No
Is there a unique maximum?
$G^{\mu}=\left(\pm \gamma^{0}, \pm \gamma^{1}, \pm \gamma^{2}, \pm \gamma^{3}\right)$

Final solution

Considering all tree level 2-particles processes (Bhabha, Moller, Compton, pair annihilation, ...)

$$
\left(G^{0}, G^{1}, G^{2}, G^{3}\right)=\left\{\begin{array}{l}
\left(\pm \gamma^{0}, \gamma^{1}, \gamma^{2}, \gamma^{3}\right) \\
\left(\pm \gamma^{0},-\gamma^{1},-\gamma^{2},-\gamma^{3}\right)
\end{array}\right\} \text { QED }
$$

All two-body processes are blind to the signs $\begin{aligned} \gamma^{i} & \rightarrow-\gamma^{i} \\ e & \rightarrow-e\end{aligned}$
$-\gamma^{1}$ solution:

- No rotational invariance!
- Fermion scattering processes are identical to QED
- Leads to non-conservation of current
- Could be discarded at higher orders or appealing to rotational symmetry?

Observations

- NO incompatible pulls!! MaxEnt can be achieved consistently in different channels.
- Entanglement generated either in s channel or in superposition of t and u channels.
- A process may display MaxEnt at some angle with a contrived solution for a's. This solution will fail in other processes.
- Using COM or LAB reference frames do not change the analysis.
- Need of three-body processes to discard wrong signs.

Furthermore,
QED is an isolated maximum
All deformations around QED produce lower entanglement

Apparently, MaxEnt can fix the structure of an interaction like QED

Could we use it to obtain an estimation of free parameters in other interactions?

MaxEnt in weak interactions

Weak interaction

Weak neutral current

$$
\begin{gathered}
J_{\mu}^{N C}=\bar{u}_{f} \gamma_{\mu}\left(g_{V}^{f}-\gamma^{5} g_{A}^{f}\right) u_{f} \\
g_{A}^{f}=T_{3}^{f} / 2 \quad g_{V}^{f}=T_{3}^{f} / 2-Q_{f} \sin ^{2} \theta_{w}
\end{gathered}
$$

For electrons: $T_{3}^{\ell}=-1 / 2, Q_{\ell}=-1$. Experimentally, $\sin ^{2} \theta_{w} \simeq 0.23$

Guessing

MaxEnt might be achievable on a line in the plane $\theta-\theta_{w}$ Non-trivial tests: Bhabha (Z / γ interference) Special case, no kinematics: Z decay

Z decay to leptons

$$
m \ll M_{z}, g_{R}=\left(g_{V}-g_{A}\right) / 2 \text { and } g_{L}=\left(g_{V}+g_{A}\right) / 2
$$

Longitudinal polarization:

$$
\left.\begin{array}{l}
\mathcal{M}_{|0\rangle \rightarrow|R L\rangle}=g_{R} M_{z} \sin \theta \\
\mathcal{M}_{|0\rangle \rightarrow|L R\rangle}=g_{L} M_{z} \sin \theta
\end{array}\right\} \quad \Delta_{0}=\frac{2\left|g_{L} g_{R}\right|}{g_{L}^{2}+g_{R}^{2}}
$$

$$
\Delta_{0}=1 \text { if }\left|g_{L}\right|=\left|g_{R}\right| \Rightarrow g_{A}=0 \text { or } g_{V}=0
$$

$g_{A}=T_{3} / 2 \neq 0 \Rightarrow g_{V}=0 \Rightarrow \sin ^{2} \theta_{w}=\frac{T_{3}}{2 Q} \xrightarrow{\substack{\text { for charged } \\ \text { leptons }}} \sin ^{2} \theta_{w}=1 / 4$.

Z decay to leptons

$$
m \ll M_{Z}, g_{R}=\left(g_{V}-g_{A}\right) / 2 \text { and } g_{L}=\left(g_{V}+g_{A}\right) / 2
$$

Circular polarizations:

$$
\begin{gathered}
\mathcal{M}_{|R\rangle \rightarrow|R L\rangle}=g_{R} M_{Z} \sqrt{2} \sin ^{2}(\theta / 2) \quad \mathcal{M}_{|L\rangle \rightarrow|R L\rangle}=g_{R} M_{Z} \sqrt{2} \cos ^{2}(\theta / 2) \\
\mathcal{M}_{|R\rangle \rightarrow|L R\rangle}=-g_{L} M_{Z} \sqrt{2} \cos ^{2}(\theta / 2) \\
\mathcal{M}_{|L\rangle \rightarrow|L R\rangle}=-g_{L} M_{Z} \sqrt{2} \sin ^{2}(\theta / 2) \\
\Delta_{R}=\frac{2\left|g_{L} g_{R}\right| \sin ^{2} \theta}{\left|2\left(g_{L}^{2}-g_{R}^{2}\right) \cos \theta \pm\left(g_{L}^{2}+g_{R}^{2}\right)\left(1+\cos ^{2} \theta\right)\right|} \\
\Delta_{R}=1 \text { if }\left\{\begin{array}{l}
\frac{g_{R}}{g_{L}}= \pm \cot ^{2}(\theta / 2) \\
\frac{g_{R}}{g_{L}}= \pm \tan ^{2}(\theta / 2)
\end{array}\right.
\end{gathered}
$$

Assuming g_{R} and g_{L} are independent of the initial polarization:

$$
\frac{g_{R}}{g_{L}}= \pm 1 \Rightarrow\left|g_{L}\right|=\left|g_{R}\right| \Rightarrow g_{V}=0 \Rightarrow \sin ^{2} \theta_{w}=1 / 4
$$

$e^{+} e^{-} \rightarrow \mu^{+} \mu-$ mediated by Z

$$
m \ll M_{Z}
$$

$$
\begin{aligned}
& \mathcal{M}_{R L} \sim(1+\cos \theta) g_{R}^{2} \quad|R L\rangle+(-1+\cos \theta) g_{R} g_{L} \quad|L R\rangle \\
& \mathcal{M}_{L R} \sim(-1+\cos \theta) g_{R} g_{L} \quad|R L\rangle+(1+\cos \theta) g_{L}^{2} \quad|L R\rangle \\
& \Delta_{R L} \sim \frac{\sin ^{2} \theta\left|g_{L} g_{R}\right|}{2\left(s^{4} g_{L}^{2}+c^{4} g_{R}^{2}\right)} \quad \Delta_{L R} \sim \frac{\sin ^{2} \theta\left|g_{L} g_{R}\right|}{2\left(c^{4} g_{L}^{2}+s^{4} g_{R}^{2}\right)} \\
& c=\cos (\theta / 2), s=\sin (\theta / 2)
\end{aligned}
$$

$$
\begin{aligned}
& s^{2} g_{L} \pm c^{2} g_{R}=0 \rightarrow \Delta_{R L}=1 \\
& c^{2} g_{L} \pm s^{2} g_{R}=0 \rightarrow \Delta_{L R}=1
\end{aligned}
$$

Imposing MaxEnt at the same COM angle:

$$
\theta=\frac{\pi}{2}, \sin ^{2} \theta_{w}=\frac{1}{4}
$$

$e^{+} e^{-} \rightarrow \mu^{+} \mu-$ with Z / γ interference

Photon contribution add terms to both RL and LR, which are independent of $\sin ^{2} \theta_{w}$

$$
\mathcal{M} \sim\left(\mathcal{M}_{Z}^{R L}\left(\theta, \theta_{w}\right)+\mathcal{M}_{\gamma}^{R L}(\theta)\right)|R L\rangle+\left(\mathcal{M}_{Z}^{L r}\left(\theta, \theta_{w}\right)+\mathcal{M}_{\gamma}^{L R}(\theta)\right)|L R\rangle
$$

$$
\Delta_{R L}=\frac{4 \sin ^{2} \theta}{6 \cos \theta+5\left(1+\cos ^{2} \theta\right)} \quad \Delta_{R L}=1 \rightarrow \quad \theta=\arccos \left(-\frac{1}{3}\right)
$$

$$
\Delta_{L R}=\frac{\sin ^{2} \theta \sin ^{2} \theta_{w}}{c^{4}+4 s^{4} \sin ^{4} \theta_{w}} \quad \Delta_{L R}=1 \rightarrow \quad \theta_{w}=\arcsin \left(\frac{1}{\sqrt{2}} \cot (\theta / 2)\right)
$$

Imposing MaxEnt at the same COM angle:

$$
\theta=\arccos \left(-\frac{1}{3}\right), \sin ^{2} \theta_{w}=\frac{1}{4}
$$

Conclusions

Summary

Maximal entanglement:

- Discards classical physics by principle redictive
- Consistent with QED, which is an isolated solution
- MaxEnt is found in every channel where it was possible
- Open Questions:
- Relax C, P and T to CPT symmetry?
- Other interaction theories: chiral, gravity, effective,...
- RG? IR divergences?
- Formulate on probabilities and Bell inequalities?

Weak mixing angle

- MaxEnt in weak interactions predict $\sin ^{2} \theta_{w}=0.25$.
- Discarding MaxEnt for Z decay with longitudinal polarization, it is always possible to achieve MaxEnt $\forall \theta_{w}$.
- How to get closer to experimental value $\sin ^{2} \theta_{w}^{\exp } \simeq 0.23$?
- Going to next order
- Compute more processes: maximization of entanglement over θ_{w}

$$
\text { ACL, J. I. Latorre, J. Rojo and L. Rottoli, SciPost Phys. 3, } 036 \text { (2017). }
$$

Ideas

Can we apply MaxEnt to

- Quarks?

No asymptotic states, confinement, no Bell inequalities.

- Flavors?
- WW annihilation, neutrinos,...?
- QED Form Factors: F_{1} vs F_{2} ?
- CKM relation to mass ratios?

Thanks!

[^0]: ACL, J. I. Latorre, J. Rojo and L. Rottoli, SciPost Phys. 3, 036 (2017).

[^1]: ${ }^{1}$ Callan-Wilczek 94, Vidal-Latorre-Rico-Kitaev 02

[^2]: ${ }^{2}$ G. Blázquez and J. I. Latorre

