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Quantum chaos and entanglement 

generation in matrix quantum 

mechanics 



Motivation 

Initially pure states of colliding nuclei 

Overpopulated gluon states 

Almost “classical” gauge fields 

 
Chaotic Classical Dynamics 

[Saviddy,Susskind…] 

• Gauge fields forget 

initial conditions 

…but is it enough for Thermalization? 

How a nearly thermal state is generated 

out of pure states? Relevant timescales? 



Motivation 

Thermalization for quantum systems? 
• Quantum extension of Lyapunov 

exponents - OTOCs  <[P(0),X(t)]2> 

• Generation of entanglement 

between subsystems 

 

• Quasinormal ringing 

Timescales: quantum vs classical?  
  QFT tools extremely limited… 

  …Holography provides intuition 



In this talk: 
Numerical attempt to look at the 

real-time dynamics of gauge-like 

models beyond classical limit  

 

Of course, not an exact simulation, 

but should be good at early times 

 

Approximating all states by 

Gaussians, study entanglement 

generation 



Our system: 
Pure Yang-Mills theory dimensionally 

reduced from D=d+1 down to D=0+1 

 

 

• Xi is the ex-gauge field  

• Classically chaotic dynamics 

•For reasons to be explained below, 

we use d=9       1/d expansion/mean 

field is a good description 



N=1 Supersymmetric Yang-Mills in D=1+9: 

 Reduce to a single point = BFSS matrix model 

[Banks, Fischler, Shenker, Susskind’1997] 

N x N hermitian 

matrices 

Majorana-Weyl fermions,  

N x N hermitian 

BFSS Model: Classically chaotic system 

with a holographic dual 

System of N D0 branes joined by 

open strings [Witten’96]: 

• Xii
μ = D0 brane positions 

• Xij
μ = open string excitations 



Stringy interpretation: 

• Dynamics of gravitating D0 branes 

• Thermalized state = black hole 

• Classical chaos = info scrambling 
[Sekino,Susskind] 

Expected to be “maximally chaotic” 

at low temperatures! 

Classical chaos and BH physics 



Bounds on chaos 

Reasonable physical assumptions 

Analyticity of OTOCs 

 

 
[Maldacena Shenker Stanford’15] 

 

• Holographic models with black 

holes saturate the bound(e.g. SYK) 

• In contrast, for  

   classical YM  

        What happens at low T ??? 

(QGP ~0.1 fm/c) 



Gaussian state approximation 
 Simple example:  

Double-well potential 

Heisenberg equations 

of motion 

Also, for example 



Next step: Gaussian Wigner function 

Assume Gaussian wave function at any t  

Simpler: Gaussian Wigner function 

For other 

correlators: use 

Wick theorem! 

Derive closed equations for  

x, p, σxx , σxp , σpp  



Origin of tunnelling 

Positive force even at x=0 

(classical minimum) 

Quantum force 

causes classical 

trajectory 

to leave classical 

minimum 



Gaussian state vs exact Schrödinger 

σ2=0.02 σ2=0.1 

σ2=0.2 σ2=0.5 

• Early-time evolution OK 

• Tunnelling period qualitatively OK 



2D potential with flat directions 
(closer to BFSS model) 

[SUSY QM, Lüscher, de Wit, Nicolai] 

 

We start with a Gaussian wave packet at 

distance f from the origin  

(away from flat directions) 

Classic runaway 

 along x=0 or y=0 
 

Classically chaotic! 



Gaussian state vs exact Schrödinger 



Gaussian state approximation 

 Is good for at least two classical 

Lyapunov times 

 Maps pure states to pure states 
          [discussion follows below] 

 Allows to study entanglement 

 Closely related to semiclassics 

 Is better for chaotic than for 

regular systems [nlin/0406054] 

 Is likely safe in the large-N limit 

X Is not a unitary evolution 



Matrix QM: Hamiltonian formulation 

a,b,c – su(N) Lie algebra indices 

Heisenberg equations of motion 



GS approximatio for matrix QM 

• CPU time ~ N^5 (double commutators) 

• RAM memory ~ N^4 

• SUSY broken, unfortunately … 



Equation of state and temperature 

• Consider mixed Gaussian states with 

fixed energy E = <H> 

• Maximize entropy w.r.t. <xx>,<pp> 
• Calculate temperature using 

 

 

 

• Can be done analytically using 

rotational and SU(N) symmetries 



Energy vs temperature 

MC data from [Berkowitz,Hanada, Rinaldi, Vranas, 

1802.02985], good agreemend for large d 



<1/N Tr(Xi
2)> vs temperature 

MC data from [Berkowitz,Hanada, Rinaldi, Vranas, 

1802.02985], good agreement for pure gauge 



“Thermal” initial conditions 

• At T=0 pure “ground” state  

   with minimal <pp>,<xx> 

• At T>0 mixed states, interpret as 

mixture of pure states, shifted 

    by “classical”  coordinates  

    with dispersion <xx>-<xx>0 

• Makes difference for 

   non-unitary evolution 

• Fermions in ground  

    state at fixed classical 

    coordinates 



OTOCs and Lyapunov distances 
 Our approximation for OTOC [X(t),P(0)]2: 

 Distance between centers of slightly 

shifted wave packets 

 Difference between Xa
i coordinates 

Two initial conditions with Xa
i shifted by 

random  

|εa
i| ~ 10-5 



Lyapunov distances 

Early times: Very similar to classical dynamics 

Late times: significantly slower growth 



Dissipation and quasinormal ringing 

• Quasinormal ringing at early times 

• Exponential growth at late times 

• Lyapunov time happens to be larger than 

dissipation time 



Lyapunov exponents and MSS bound 

VS 



Entanglement entropy: Gaussian states 

• Reduced density matrix is also Gaussian! 

• Entropy of (mixed) Gaussian state: 

• fk are symplectic eigenvalues of the block 

matrix 

 
 

• Uncertainty principle: fk ≥ 1/2  



Gaussian states: symplectic structure 

• Symplectic eigenvalues of (2 N)x(2 N) real, 

symmetric, positive-definite matrix A: 

    Eigenvalues of Ω A, 

    Pairs ± i fk 
 

• For the correlator block matrix of entire 

system, our evolution equations can be 

written as 

• Symplectic eigenvalues are conserved 

• Pure states are mapped to pure states 



Entanglement entropy 

• Chaotic systems are expected to entangle A 

and B         Entanglement entropy saturates 

 

• Subsystem A  

    is a matrix block 

• We start with a product  

    state for each matrix  

    component 



Entanglement vs time 

Late-time saturation = information scrambling 

#d.o.f’s = {1, 9, 36, 81} 



Micro- vs. Macro-canonical ensemble 

• For pure gauge BFSS, 

• For sufficiently small subsystem Ndof << Ntot 

Saturation value of entanglement entropy is: 

Entanglement entropy 

of a pure state 

Von Neumann entropy 

of a thermal state, 

defines EoS and T  

• Entanglement entropy is locally 

indistinguishable from thermal entropy 

• Real-time thermalization of microcanonical 

ensemble 



Entanglement saturation time 
(vs Lyapunov exponents) 

Entanglement saturates much faster than 

Lyapunov time, at high T – classical Lyapunov 

Fit SE(t) as 
 

A Tanh(t/τE) 



Summary: Lyapunov exponents 

• Longer quantum Lyapunov times vs. 

classical, important for MSS bound 
 

• “Confining” regime non-chaotic 
 

• Full BFSS model chaotic at all T 
 

• Lyapunov time longer than dissipation 

time 

 

• Potential bias, since Lyapunov growth at 

late times, approximation might fail 
 

 



Summary: Entanglement 

• “Scrambling” behavior for entanglement 

entropy 
 

• Entanglement saturation timescale is the 

shortest 
 

• Saturation value given by thermal entropy, 

    Evidence for real-time thermalization! 
 

• At high T governed by classic, rather than 

quantum Lyapunov 
 

• Entanglement entropy is the best short-time 

probe of thermalization in our simulations 



Summary 

• Gaussian state approximation: ~V2 

scaling of CPU time for QCD/ Yang-Mills 

• Feasible on moderately large lattices 

• Quantum effects on thermalization? 

• Topological transitions in real time? 





Micro- vs. Macro-canonical ensemble 

Late-time saturation value? 



OTOCs and Lyapunov distances 
OTOC in an overfull basis of Gaussian states: 

OTOC in terms of infinitesimal shift: 

Very similar to classical Lyapunov distance!!! 

Saturated by saddle point at X=X’, P=P’ !!! 



Fate of supersymmetry 

16 supercharges in BFSS model: 

Gauge transformations 



Fate of supersymmetry 

In full quantum theory 

In CSFT approximation 

Fierz identity (cyclic shift of indices): 

Fermionic 3pt function seems necessary! 



Ungauging the BFSS model 

• Gauge constraints 

• For Gaussian states we can only have a 

weaker constraint 
 

• We work with ungauged model 

[Maldacena,Milekhin’1802.00428]         
(e.g. LGT with unit Polyakov loops) 
 

• Ungauging preserves most of the 

features of the original model 
[Berkowitz,Hanada, Rinaldi, Vranas 1802.02985] 



Summary: Outlook 

• Hawking radiation of D0 branes conjectured 
 

• We do see it if quantum bosonic corrections 

are omitted 

 

• Bosonic quantum corrections remove the 

instability     imperfect cancellation because 

of broken SUSY? 



Real-time evolution: <1/N Tr(Xi
2)> 

Wavepacket spread vs classical shrinking 

For BFSS <1/N Tr(Xi
2)> grows, instability? 



Quasinormal ringing I 

Linearizing equations of motion around 

thermal equilibrium, we get oscillations with 

frequencies: 

•  wX = (2d-2)/d <1/N tr(Xi
2)> (X and P) 

•  wXX = 6 wX
2   (XX, XP and PP) 

To-be quasinormal modes! 



Quasinormal ringing 

Re(w) vs Temperature 

High-T scaling: wxx = 4.89 T1/4 

vs. wxx = 5.15 T1/4 [Romatschke, Hanada] 



Quasinormal ringing 

Im(w) vs Temperature 

Dissipation rate vanishes in the 

confinement regime, in contrast to BFSS 



Real-time evolution 

• Thermal initial conditions 

• Randomly shifted Gaussian wave functions 
 

• Only a few instances of random initial 

conditions 

• Good self-averaging at sufficiently large N 
 

• Numerically solving the evolution equations 

for X, P, <XX>, <XP>, <PP>, <ψψ> 
 

• We use N=5 and N=7 (remember N5 scaling of 

CPU time) 


