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mechanics




Motivation

Initially pure states of colliding nuclei
Overpopulated gluon states
Almost “classical” gauge fields

Chaotic Classical Dynamics
[Saviddy,Susskind...]

» Gauge fields forget

initial conditions | : .
...but is it enough for Thermalization?

How a nearly thermal state is generated
out of pure states? Relevant timescales?




Motivation

Thermalization for quantum systems?
 Quantum extension of Lyapunov

exponents - OTOCs <[P(0),X(t)]*>
 Generation of entanglement

between subsystems
TH+ [11) ﬁ
\/5 o

* Quasinormal ringing
Timescales: quantum vs classical?
® QFT tools extremely limited...

© ...Holography provides intuition




In this talk:
Numerical attempt to look at the
real-time dynamics of gauge-like

models beyond classical limit

-

Of course, not an exact simulation,
but should be good at early times
Approximating all states by
Gaussians, study entanglement
generation




Our system:
Pure Yang-Mills theory dimensionally

reduced from D=d+1 down to D=0+1
L= |tr XIX7 = Lor [x7, X9]7

* X' is the ex-gauge field

* Classically chaotic dynamics

*For reasons to be explained below,
we use d=9mmp 1/d expansion/mean
field is a good description



BFSS Model: Classically chaotic system
with a holographic dual
N=1 Supersymmetric Yang-Mills in D=1+9:
Reduce to a single point = BFSS matrix model
[Banks, Fischler, Shenker, Susskind’1997]

= o [t 4 2075 Tl X7 20,1,

= 57
N X N hermitian Majorana-Weyl fermions,
matrices N x N hermitian

System of N DO branes joined by
open strings [Witten’96]:
» X', = DO brane positions
» XU, = open string excitations |




Classical chaos and BH physics
Stringy interpretation:
 Dynamics of gravitating DO branes
* Thermalized state = black hole

» Classical chaos = info scrambling
[Sekino,Susskind]

Expected to be “maximally chaotic”

at low temperatures!




Bounds on chaos

Reasonable physical assumptions
Analyticity of OTOCs

A 7 < 271 (QGP -0.1 fm/c)

[Maldacena Shenker Stanford’15]

* Holographic models with black
holes saturate the bound(e.g. SYK)
* In contrast, for ., T1/4
classical YM AL L
What happens at low T ?22?




Gaussian state approximation
Simple example:

Double-well potential

I"{:ﬁg az? | b2® | cat
2 ' 2 3 ' 4
Heisenberg equations | ,
of motion | I
at:i} — ﬁ:r §
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Also, for example
9, (22) = ap 4 53|\ /1>




~ Next step: Gaussian Wigner function

Assume Gaussian wave function at any t
Simpler: Gaussian Wigner function

<572 ) = 51722 T Oz, For other

p°) =p°+0pp, | correlators: use

5= ) =xp+ 0y Wick theorem!

) = 2% 4 6220, + 30,72,

p) = x°p + 2204, + pOay

Derive closed equations for
X, Py Oxx » Xp)app




Origin of tunnelling
, 3

O = p Positive force even at x=0
(classical minimum)

atg$$ — 20—331):;

OOy = Opp — A04p — 20204, — 3c20 4y — 3CO2

Ot0pp = —2 (aamp + 2020y + 3cr?oy, + 3(30'$$O'$p)

Quantum force
causes classical
trajectory
to leave classical
minimum




- Gaussian state vs exact Schrodinger
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» Early-time evolution OK
« Tunnelling period qualitatively OK
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2D potential with flat directions

(closer to BFSS model)
[SUSY QM, Liischer, de Wit, Nicolai]

~ ~2 ~2
I p K a202
H =75+ 5 + 527y

Classic runaway
along x=0 or y=0

Classically chaotic!

We start with a Gaussian wave packet at
distance f from the origin
(away from flat directions)



Gaussian state vs exact Schr

odinger
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Gaussian state approximation

v |Is good for at least two classical
Lyapunov times
v Maps pure states to pure states

[discussion follows below]

v Allows to study entanglement

v Closely related to semiclassics

v |Is better for chaotic than for
regular systems [nlin/0406054]

v Is likely safe in the large-N limit

X Is not a unitary evolution



Matrix QM: Hamiltonian formulation

: lfa"b 1 f Cbve vd ve > Ia
H= EFE Pai T Eﬂ'ﬁi'm[fadfsxi ‘Tj‘}“aﬁ ‘Hi" o E Eﬂ'b‘?ﬂ'}x [gi]

a,b,c - su(N) Lie algebra indices
Heisenberg equations of motion

aﬁ}zf — f)f
atPf — —OabcccdeX;?XfX; o %Obacgéﬁwgwga

Xbye
3 E T O

at¢; — CﬂchfJgﬁlbg’



GS approximatio for matrix QM
04 P = —CapcCode X] X{ X5 — $Chacolyg (100G ) —

_ Cabcccde)(;? (XX ff — CpeCloge [XX]??XE — CopcClrde [XX]?fo
O X X3 = [XPI + [XPJE,

X P8 = [PPI%] — CupeCuge (XEXE + [ X X]4) X X5 -
— CapeClae (XPX¢ +[XX]2) (X X]H —
— CapcCege (X7 X + [ X X]8) [XX]jﬁa
[PP)}] = —CapeCeac (XFX5 + [XX]I) [X P2 —
— CapeCloge (X2X5 + [ X X]2) [X P —

— CapcClde (XZX T 4 [X X]5) [XP]% + ({a, i} < {f. k})
« CPU time ~ N“5 (double commutators)
« RAM memory ~ N°4

« SUSY broken, unfortunately ...




Equation of state and temperature

Consider mixed Gaussian states with
fixed energy E = <H>

Maximize entropy w.r.t. <xx>,<pp>
Calculate temperature using

-1 _ 98
3 ~ OFE

Can be done analytically using
rotational and SU(N) symmetries



Energy vs temperature
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MC data from [Berkowitz,Hanada, Rinaldi, Vranas,
1802.02985], good agreemend for large d



<1/N Tr(X?)> vs temperature
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MC data from [Berkowitz,Hanada, Rinaldi, Vranas,
1802.02985], good agreement for pure gauge



“Thermal” initial conditions

At T=0 pure “ground” state

with minimal <pp>,<xx>

At T>0 mixed states, interpret as
mixture of pure states, shifted
by “classical” coordinates

with dispersion <xx>- <XX>g

Makes difference for
non-unitary evolution |- | >
Fermions in ground || - wegf F's-
state at fixed classical| | - = *: =
coordinates 1




OTOCs and Lyapunov distances

# Our approximation for OTOC [X(t),P(0)]>:
Distance between centers of slightly
shifted wave packets

A X i

tn-

Difference between X% coordinates
Two initial conditions with X9 shifted by
random
|&%] ~ 107




Lyapunov distances
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Early times: Very similar to classical dynamics
Late times: significantly slower growth



Dissipation and quasinormal ringing

10'0 15 X2

* Quasinormal ringing at early times
» Exponential growth at late times
 Lyapunov time happens to be larger than

dissipation time



Lyapunov exponents and MSS bound
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Entanglement entropy: Gaussian states
pa = Trp [¥)(¥

 Reduced density matrix is also Gaussian!
 Entropy of (mixed) Gaussian state:

1 1
5= —tx (plogp)

S Yu(sd)

* f, are symplectic eigenvalues of the block

matrix . o
A [ UXEXD)) (XPBD))
((X7P1)) ((PfPY))

* Uncertainty principle: f, 2 1/2



Gaussian states: symplectic structure

Symplectic eigenvalues of (2 N)x(2 N) real,
symmetric, positive-definite matrix A:

Eigenvalues of 2 A, Q:( 0 é)
Pairs = i f, -1

For the correlator block matrix of entire
system, our evolution equations can be

written as | 0, (AQ) =T (AQ) — (AQ) T.
c_ (01 Vip = 3Vapep(XcXp)
N ( =V 0) H=P?24VipepXaXpXcXp /4

Symplectic eigenvalues are conserved
Pure states are mapped to pure states



Entanglement entropy

pa = Tr p |[¥)(¥
Sa = —Tr (palog(pa))

Chaotic systems are expected to entangle A
and B Entanglement entropy saturates

A " Single

matrix entry 3 x DO-branes

Subsystem A

is @ matrix block

We start with a product
state for each matrix o
component J

oy y
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Late-time saturation = information scrambling
#d.o.f’s = {1, 9, 36, 81}

Entanglement vs time

T=1.0, Bosonic MM
Single matrix entry
Single DO-brane

Two DO-branes
Three D0-branes
Overall von Neumann

F1hd

T=5.0, Bosonic MM
Single matrix entry
Single DO-brane
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Three DO-branes
Cwverall von Neumann
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T=1.0, BFSS
Single matrix entry

Two DO-branes

Three DO-branes

Overall von Neumann
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Micro- vs. Macro-canonical ensemble

* For pure gauge BFSS,
* For sufficiently small subsystem N, << N,
Saturation value of entanglement entropy is:

Smam ~ S( Ndﬂf/Ntﬂt

Von Neumann entropy
Entanglement entropy . .\ o rmal state,

QR pure state defines EoSand T

» Entanglement entropy is locally
indistinguishable from thermal entropy
* Real-time thermalization of microcanonical

ensemble



Entanglement saturation time
(vs Lyapunov exponents)

| Fit Sg(t) as
|| A Tanh(t/Tg)

Iogm(k'_), Iogm(kE)

Classical, A, — MSS mmm
Bosonic MM, | ——  Ag |
BFSS, A @~ A e

0.1 1 10
T

Entanglement saturates much faster than
Lyapunov time, at high T - classical Lyapunov




Summary: Lyapunov exponents

Longer quantum Lyapunov times vs.
classical, important for MSS bound

“Confining” regime non-chaotic
Full BFSS model chaoticatall T

Lyapunov time longer than dissipation
time

Potential bias, since Lyapunov growth at
late times, approximation might fail



Summary: Entanglement

“Scrambling” behavior for entanglement
entropy

Entanglement saturation timescale is the
shortest

Saturation value given by thermal entropy,
Evidence for real-time thermalization!

At high T governed by classic, rather than
quantum Lyapunov

Entanglement entropy is the best short-time
probe of thermalization in our simulations



Summary
Gaussian state approximation: ~ V4
scaling of CPU time for QCD/ Yang-Mills
Feasible on moderately large lattices
Quantum effects on thermalization?

Topological transitions in real time?



Backup slides



Micro- vs. Macro-canonical ensemble
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Late-time saturation value?



OTOCs and Lyapunov distances

OTOC in an overfull basis of Gaussian states:

( [%e ), B (n)r) _
[ axtap ((x, P [%2 0,22 )] 1X, Py
(X', P |X2 (1), P} (O)] X, P)) .
Saturated by saddle point at X=X, P=P’ !!!
OTOC in terms of infinitesimal shift:
(X, P| | X2 (), P2 (0)] |X, P) =
0

_ _tﬁ_{X P| 1EF{G}X.:L (t) —1EF{D} |X P )
E

Very similar to classical Lyapunov distance!!!



Fate of supersymmetry
16 supercharges in BFSS model:
Qo = P 0], 50§ — §Cabe X7 X [045] 0 5 V%
04 — 0,05 — 040

{@m é‘)g} = 2505 H — 2 (07) 5 X0J°

[ﬁ, @7} _ —iqﬁ,?jﬂ(\/

Gauge transformations

a __ b Dc ) b e
J¢ = Cachi P@, Qcﬂbﬂwﬂwﬂ




Fate of supersymmetry
In full quantum theory

8t©5 — % abc&i&%&% (033025 — 6&,8676) =0
Fierz identity (cyclic shift of indices):

Tilap (Oilys T 1Tilary (0ilgs + Tilas (06,5 =
= 0005 + 0ay 085 + 005048

In CSFT approximation
0:Qs = 5Cane{ V24 )0 (05015 — dapdas ) # 0

Fermionic 3pt function seems necessary!



Ungauging the BFSS model

Gauge constraints
Jo = OachfPf — %Cabcwgwg Ja |¢> = 0
 For Gaussian states we can only have a

weaker constraint (1)] jﬂ 1)) =0

« We work with ungauged model

[Maldacena,Milekhin’1802.00428]
(e.g. LGT with unit Polyakov loops)

» Ungauging preserves most of the

features of the original model
[Berkowitz,Hanada, Rinaldi, Vranas 1802.02985]



Summary: Outlook
Hawking radiation of DO branes conjectured
We do see it if quantum bosonic corrections
are omitted

Bosonic quantum corrections remove the
instability imperfect cancellation because

of broken SUSY?




Real-time evolutlon <1/N Tr(X;?)>
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Wavepacket spread vs classical shrinking
For BFSS <1/N Tr(X?)> grows, instability?



Quasinormal rlngmg |
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Linearizing equations of motion around
thermal equilibrium, we get oscillations with
frequencies:

* W, = (2d-2)/d <1/N tr(X?)> (X and P)

* Wy =6 w,? (XX, XP and PP)

To-be quasinormal modes!



Quasinormal ringing
Re(w) vs Temperature
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High-T scaling: w,, = 4.89 T4
vs. W,, = 5.15 T4 [Romatschke, Hanada]



Quasinormal ringing
Im(w) vs Temperature

~ Bosonic MM —+—
10 BFSS
Class.Lyapunov
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Dissipation rate vanishes in the
confinement regime, in contrast to BFSS



Real-time evolution

* Thermal initial conditions
* Randomly shifted Gaussian wave functions

* Only a few instances of random initial
conditions

» Good self-averaging at sufficiently large N

 Numerically solving the evolution equations
for X, P, <XX>, <XP>, <PP>, <yy>

« We use N=5 and N=7 (remember N scaling of
CPU time)



