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Gauge Theories are challenging:
• Involve non-perturbative physics

• Confinement of quarks  hadronic spectrum
• Exotic phases of QCD (color 

superconductivity, quark-gluon plasma)
Hard to treat experimentally (strong forces)
Hard to treat analytically (non perturbative)
 Lattice Gauge Theory (Wilson, Kogut-Susskind…)
Monte-Carlo in Euclidean spacetime
 Hadronic spectrum
Hard to treat numerically in some cases 

(sign problem in fermionic scenarios, real 
time evolution)



Problems of conventional LGT techniques

• Real-Time evolution:
– Not available in Wick rotated, Euclidean spacetimes, used in 

conventional Monte-Carlo path integral LGT calculations

– Exists by default in a real experiment done in a quantum simulator: 
prepare some initial state and the appropriate Hamiltonian (in terms 
of the simulator degrees of freedom), and let it evolve

• Sign problem:
– Appears in several scenarios with fermions (finite density), 

represented by Grassman variables in a Wick-rotated, Euclidean 
spacetime



Quantum Simulation and Tensor Networks for 
Lattice Gauge Theories

• An active, rapidly growing research field 

• Quantum Simulation for LGTs (around 8 years):
– MPQ Garching & Tel Aviv University
– IQOQI Innsbruck & Bern (Zoller, Wiese, Blatt)
– ICFO, Barcelona (Lewenstein)
– Heidelberg (Berges, Oberthaler)
– Iowa (Meurice)
– Bilbao (Solano)
– …

• Tensor Networks for LGTs (around 6 years):
– MPQ Garching & DESY
– Ghent (Verstraete)
– ICFO (Lewenstein)
– IQOQI, Bern, Ulm (Zoller, Wiese, …)
– Mainz (Orus)
– …



Quantum Simulation

• Take a model, which is either
– Theoretically unsolvable

– Numerically problematic

– Experimentally inaccessible

• Map it to a fully controllable quantum system – quantum 
simulator

• Study the simulator experimentally



Quantum Simulation of LGTs

• Real-Time evolution:
– Not available in Wick rotated, Euclidean spacetimes, used in 

conventional Monte-Carlo path integral LGT calculations

– Exists by default in a real experiment done in a quantum simulator: 
prepare some initial state and the appropriate Hamiltonian (in terms 
of the simulator degrees of freedom), and let it evolve

• Sign problem:
– Appears in several scenarios with fermions (finite density), 

represented by Grassman variables in a Wick-rotated, Euclidean 
spacetime

– In real experiments, as those carried out by a quantum simulator, 
fermions are simply fermions, and no path integral is calculated: 
nature does not calculate determinants.



Tensor Networks

• The number of variables needed to describe states of a many-
body system scales exponentially with the system size. This 
makes it hard to simulate large systems (classically).

• Tensor networks are Ansätze for describing and solving many 
body states, mostly on a lattice, for either analytical or 
numerical studies, based on contractions of local tensors that 
depend on few parameters.

• In spite of their simple description, tensor network states 
describe and approximate physically relevant states of many-
body systems.



Tensor Network Studies of LGTs

• Real-Time evolution:
– Not available in Wick rotated, Euclidean spacetimes, used in 

conventional Monte-Carlo path integral LGT calculations

– Calculations in quantum Hilbert spaces, where states evolve in real 
time, instead of in Wick-rotated statistical mechanics analogies.

• Sign problem:
– Appears in several scenarios with fermions (finite density), 

represented by Grassman variables in a Wick-rotated, Euclidean 
spacetime

– Calculations in quantum Hilbert spaces: fermions are fermions, no 
integration over time dimension. If the problem arises, it can be the 
result of using a particular method, nothing general.



Hamiltonian LGT - Degrees of Freedom

• The lattice is spatial: time is a continuous, real coordinate.

• Matter particles (fermions) – on the vertices.

• Gauge fields – on the lattice’s links



Gauge Transformations

• Act on both the matter and gauge degrees of freedom.

• Local : a unique transformation
(depending on a unique
element of the gauge group)
may be chosen for each site

• The states
are invariant under each
local transformation separately.



Symmetry  Conserved Charge

– Transformation rules on the links

– Gauge Transformations:

– Generators  Gauss law , left and right E fields:



• Generators of gauge transformations (cQED):

…

…

Sectors with fixed 
Static charge 
configurations

Gauss’ Law

Structure of the Hilbert Space

Q- +

-

+



Allowed Interactions

• Must preserve the symmetry – commute with the “Gauss 
Laws” (generators of symmetry transformations)



Allowed Interactions

• Must preserve the symmetry – commute with the “Gauss 
Laws” (generators of symmetry transformations)

• First option: Link (matter-gauge) interaction:

– A fermion hops to a neighboring
site, and the flux on the link
in the middle changes to preserve
Gauss laws on the two relevant
sites

x x + 1



Allowed Interactions

• Must preserve the symmetry – commute with the “Gauss 
Laws” (generators of symmetry transformations)

• Second option: plaquette interaction:

– The flux on the links of a single
plaquette changes such that the
Gauss laws on the four relevant
sites is preserved.

– Magnetic interaction.
x x + 1

x + 2



Quantum Simulation of LGT

• Theoretical Proposals:
– Various gauge groups: 

• Abelian (U(1), ZN)

• non-Abelian (SU(N)…)

– Various simulating systems:

• Ultracold Atoms

• Trapped Ions

• Superconducting Qubits

– Various simulation approaches:

• Analog

• Digital

?



Ultracold Atoms in Optical Lattices

• Atoms are cooled and trapped in periodic potentials created 
by laser beams.

• Highly controllable systems:
– Tuning the laser beams  shape of the potential

– Tunable interactions (S-wave collisions among atoms in the ultracold 
limit tunable with Feshbach resonances, external Raman lasers)

– Use of several atomic species 
different internal (hyperfine) levels                                may be used, 
experiencing different optical potentials

– Easy to measure, address and manipulate

RMP 80, 885 (2008)



QS of LGTs with Ultracold Atoms in Optical Lattices

Fermionic matter fields

(Bosonic) gauge fields

Atomic internal (hyperfine) levels
Super-lattice:

0 (ultracold)



Gauss law is added to the Hamiltonian as a constraint (penalty term).

Leaving a gauge invariant sector of Hilbert space costs too much Energy.

Low energy sector with an effective gauge invariant Hamiltonian.

Emerging plaquette interactions (second order perturbation theory).

Δ ≫ 𝛿𝐸

…
..

𝛿𝐸

No static charges
Gauge invariant sector

Other sectors

Analog Approach I: Effective Local Gauge Invariance

E. Zohar, B. Reznik, Phys. Rev. Lett. 107, 275301 (2011) 

E. Zohar, J. I. Cirac, B. Reznik, Phys. Rev. Lett. 109, 125302 (2012) 

E. Zohar, J. I. Cirac, B. Reznik, Phys. Rev. Lett. 110, 055302 (2013)

E. Zohar, J. I. Cirac, B. Reznik, Rep. Prog. Phys. 79, 014401 (2016)



Analog Approach II:
Atomic Symmetries  Local Gauge Invariance

Link gauge-matter interactions
Gauge invariance / charge conservation

Fermionic matter
Gauge field operator U

Atomic boson-fermion collisions
Hyperfine angular momentum conservation

Fermionic atoms c,d (or more)
(Generalized) Schwinger algebra, constructed

out of the bosonic atoms a,b (or more)

Gauge invariance is a fundamental symmetry
of the quantum simulator.

Applicable for U(1), SU(N) etc. with truncated local Hilbert spaces.

E. Zohar, J. I. Cirac, B. Reznik, Phys. Rev. Lett. 110, 125304 (2013)

E. Zohar, J. I. Cirac, B. Reznik, Phys. Rev. A 88 023617 (2013)

E. Zohar, J. I. Cirac, B. Reznik, Rep. Prog. Phys. 79, 014401 (2016)

D. González Cuadra, E. Zohar, J. I. Cirac, New J. Phys. 19 063038 (2017)



Analog Approach II:
Atomic Symmetries  Local Gauge Invariance

Link gauge-matter interactions
Gauge invariance / charge conservation

Fermionic matter
Gauge field operator U

Atomic boson-fermion collisions
Hyperfine angular momentum conservation

Fermionic atoms c,d (or more)
(Generalized) Schwinger algebra, constructed

out of the bosonic atoms a,b (or more)

Calculations applying our scheme towards an experiment: Kasper, 
Hebenstreit, Jendrzejewski, Oberthaler, Berges, NJP 19 023030 

(2017) – very exciting results

E. Zohar, J. I. Cirac, B. Reznik, Phys. Rev. Lett. 110, 125304 (2013)

E. Zohar, J. I. Cirac, B. Reznik, Phys. Rev. A 88 023617 (2013)

E. Zohar, J. I. Cirac, B. Reznik, Rep. Prog. Phys. 79, 014401 (2016)

D. González Cuadra, E. Zohar, J. I. Cirac, New J. Phys. 19 063038 (2017)



1d elementary link interactions are already gauge invariant

Auxiliary fermions:

Heavy,
constrained to “sit”
on special vertices

- Virtual processes

- Valid for any gauge group,
once the link interactions
are realized

Further Dimensions  Plaquette Interactions

E. Zohar, J. I. Cirac, B. Reznik, Phys. Rev. Lett. 110, 125304 (2013)

E. Zohar, J. I. Cirac, B. Reznik, Phys. Rev. A 88 023617 (2013)

E. Zohar, J. I. Cirac, B. Reznik, Rep. Prog. Phys. 79, 014401 (2016)

D. González Cuadra, E. Zohar, J. I. Cirac, New J. Phys. 19 063038 (2017)



Digital Lattice Gauge Theories

ML

C

Matter Fermions
Link (Gauge) degrees of freedom
Control degrees of freedom

E. Zohar, A. Farace, B. Reznik, J. I. Cirac, Phys. Rev. Lett. 118 070501 (2017)
E. Zohar, A. Farace, B. Reznik, J. I. Cirac, Phys. Rev. A. 95 023604 (2017)
J. Bender, E. Zohar, A. Farace, J. I. Cirac, New J. Phys. 20 093001 (2018)

Trotterized time evolution:



Digital Lattice Gauge Theories

ML

C

Matter Fermions
Link (Gauge) degrees of freedom
Control degrees of freedom

Entanglement is created 
and undone between the 
control and the physical 
degrees of freedom. 

Trotterized time evolution:

E. Zohar, A. Farace, B. Reznik, J. I. Cirac, Phys. Rev. Lett. 118 070501 (2017)
E. Zohar, A. Farace, B. Reznik, J. I. Cirac, Phys. Rev. A. 95 023604 (2017)
J. Bender, E. Zohar, A. Farace, J. I. Cirac, New J. Phys. 20 093001 (2018)



Plaquettes: Four-body Interactions

M1

C 2

3

4

Two-body interactions  four-body interactions
= =

- A “Stator” (state-operator)
B. Reznik, Y. Aharonov, B. Groisman, Phys. Rev. A 6 032312
(2002)
E. Zohar, J. Phys. A. 50 085301 (2017)

E. Zohar, A. Farace, B. Reznik, J. I. Cirac, Phys. Rev. Lett. 118 070501 (2017)
E. Zohar, A. Farace, B. Reznik, J. I. Cirac, Phys. Rev. A. 95 023604 (2017)
J. Bender, E. Zohar, A. Farace, J. I. Cirac, New J. Phys. 20 093001 (2018)



Further generalization

Any gauge group

Feasible for finite or truncated infinite groups

E. Zohar, J. Phys. A. 50 085301 (2017)
E. Zohar, A. Farace, B. Reznik, J. I. Cirac, Phys. Rev. A. 95 023604 (2017)



Is it necessary to use cold atoms?

• Cold atoms offer a combination of fermionic and bosonic 
degrees of freedom, which makes them useful for the 
quantum simulation of gauge theories with fermionic matter 
in 2+1d and more.

• Using systems that do not offer fermionic degrees of 
freedom, one can simulate
– Pure gauge theories could be simulated using other architectures –

e.g. trapped ions (Innsbruck), superconducting qubits (Bilbao),…

– 1+1d gauge theories with matter, using Jordan-Wigner 
transformations (like in the trapped ions Innsbruck experiment).

– Something else?!

E. Zohar, J. Phys. A. 50 085301 (2017)
E. Zohar, A. Farace, B. Reznik, J. I. Cirac, Phys. Rev. A. 95 023604 (2017)



Do we really need fermions?

• Fermions are subject to a global Z2 symmetry (parity 
superselection)

• If this symmetry is made local (which happens naturally in a 
lattice gauge theory whose gauge group contains Z2 as a 
normal subgroup), it can be used for locally transferring the 
statistics information to the gauge field, leaving one with 
hard-core bosonic matter (spins)

Majorana
Fermion:
Statistics

Hardcore
Boson:
Physics

E. Zohar, J. I. Cirac, Phys. Rev. B 98, 075119 (2018)



Do we really need fermions?

• With a local unitary transformation which is independent of 
the space dimension, one can remove the fermions from the 
Hamiltonian, and stay with hard-core bosonic matter and 
electric field dependent signs that preserve the statistics.

Unitary transformation

E. Zohar, J. I. Cirac, Phys. Rev. B 98, 075119 (2018)



Do we really need fermions?

• With a local unitary transformation which is independent of 
the space dimension, one can remove the fermions from the 
Hamiltonian, and stay with hard-core bosonic matter and 
electric field dependent signs that preserve the statistics.

• This is possible for any lattice gauge theory that contains Z2 as 
a normal subgroup (U(1), U(N), SU(2N)…)

• Otherwise, an auxiliary Z2 gauge field without dynamics could 
be introduced for the trick; also for a pure fermionic theory 
(no gauge field) that could be minimally coupled.

E. Zohar, J. I. Cirac, Phys. Rev. B 98, 075119 (2018)



Do we really need fermions?

• This procedure opens the way for quantum 
simulation of lattice gauge theories with fermionic 
matter in 2+1d and more, even with simulating 
systems that do not offer fermionic degrees of 
freedom.

E. Zohar, J. I. Cirac, Phys. Rev. B 98, 075119 (2018)



PEPS

• Projected Entangled Pair States: a particular tensor network 
construction, that

– Allows to encode and treat symmetries in a very natural 
way.

– Has, by construction, a bipartite entanglement area law, 
and therefore is suitable for describing “physically 
relevant” states.

– Offers new approaches for the study of phase diagrams 
and other properties of many body systems.

• In 1 space dimension – MPS (Matrix Product States)



PEPS

• Constructed out of local ingredients that include physical and 
auxiliary degrees of freedom.





• A physical only state remains out of projecting pairs of 
auxiliary degrees of freedom, on the two sides of a link, onto 
maximally entangled states.



• An entanglement area law is satisfied by construction.



• Demanding global symmetry:

– Acting with a group transformation on the physical degrees of 
freedom is equivalent to acting on the auxiliary ones.

– Projectors are invariant under group actions from both sides.

=

=



Global Transformation:



=



=



=



=



Global Symmetry:



Virtual vs. Physical Gauge Invariance

Virtual- PEPS Physical – LGT states

=

Physical charge, but auxiliary electric 
fields: local symmetry exists, but it 
auxiliary/virtual. The physical 
symmetry is global, after the bonds 
projection.



Gauging the PEPS: minimal coupling of a state

• Lift the virtual symmetry to be physical:
The global to local.

E. Zohar and M. Burrello, New J. Phys. 18 043008 (2016)
E. Zohar, J.I. Cirac, Phys. Rev. D 97, 034510 (2018)



Gauging the PEPS: minimal coupling of a state

• Lift the virtual symmetry to be physical:
The global to local.

• Step 1: Introduce gauge field Hilbert spaces on the links. Add (by a tensor 
product) the gauge field singlet states:

E. Zohar and M. Burrello, New J. Phys. 18 043008 (2016)
E. Zohar, J.I. Cirac, Phys. Rev. D 97, 034510 (2018)



Gauging the PEPS: minimal coupling of a state

• Lift the virtual symmetry to be physical:
The global to local.

• Step 2: Entangle the auxiliary degrees on the outgoing links with the 
gauge fields, by a unitary gauging transformation (map the auxiliary 
electric field information to the physical one)

E. Zohar and M. Burrello, New J. Phys. 18 043008 (2016)
E. Zohar, J.I. Cirac, Phys. Rev. D 97, 034510 (2018)



Gauging the PEPS: minimal coupling of a state

=

=

=

=

Building block of a globally 
invariant PEPS

Gauging
Transformation

Building block of a globally invariant PEPS
(gluing together the matter and gauge field 
tensors)

E. Zohar and M. Burrello, New J. Phys. 18 043008 (2016)
E. Zohar, J.I. Cirac, Phys. Rev. D 97, 034510 (2018)



Local Transformation:

E. Zohar and M. Burrello, New J. Phys. 18 043008 (2016)
E. Zohar, J.I. Cirac, Phys. Rev. D 97, 034510 (2018)
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E. Zohar and M. Burrello, New J. Phys. 18 043008 (2016)
E. Zohar, J.I. Cirac, Phys. Rev. D 97, 034510 (2018)
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E. Zohar and M. Burrello, New J. Phys. 18 043008 (2016)
E. Zohar, J.I. Cirac, Phys. Rev. D 97, 034510 (2018)
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E. Zohar and M. Burrello, New J. Phys. 18 043008 (2016)
E. Zohar, J.I. Cirac, Phys. Rev. D 97, 034510 (2018)
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E. Zohar and M. Burrello, New J. Phys. 18 043008 (2016)
E. Zohar, J.I. Cirac, Phys. Rev. D 97, 034510 (2018)



=

E. Zohar and M. Burrello, New J. Phys. 18 043008 (2016)
E. Zohar, J.I. Cirac, Phys. Rev. D 97, 034510 (2018)



Local Symmetry:

E. Zohar and M. Burrello, New J. Phys. 18 043008 (2016)
E. Zohar, J.I. Cirac, Phys. Rev. D 97, 034510 (2018)



Locally gauge invariant fermionic PEPS

• We We wish to describe PEPS of fermionic matter coupled to dynamical 
gauge fields.

• Starting point – Gaussian fermionic PEPS with a global symmetry.

– Gaussian states – ground states of quadratic Hamiltonians, completely 
described by their covariance matrix. Very easy to handle analytically with the 
use of the Gaussian formalism.

– Fermionic PEPS – defined with fermionic creation operators acting on the Fock 
vacuum. Easy to parameterize if they are Gaussian.

E. Zohar, M. Burrello, T.B. Wahl, and J.I. Cirac, Ann. Phys. 363, 385-439 (2015)
E. Zohar, T.B. Wahl, M. Burrello, and J.I. Cirac, Ann. Phys. 374, 84-137 (2016)
E. Zohar, J.I. Cirac, Phys. Rev. D 97, 034510 (2018)



Locally gauge invariant fermionic PEPS

• We We wish to describe PEPS of fermionic matter coupled to dynamical 
gauge fields.

• Starting point – Gaussian fermionic PEPS with a global symmetry.

– Gaussian states – ground states of quadratic Hamiltonians, completely 
described by their covariance matrix. Very easy to handle analytically with the 
use of the Gaussian formalism.

– Fermionic PEPS – defined with fermionic creation operators acting on the Fock 
vacuum. Easy to parameterize if they are Gaussian.

• Start with these, then make the symmetry local and add the gauge field.

E. Zohar, M. Burrello, T.B. Wahl, and J.I. Cirac, Ann. Phys. 363, 385-439 (2015)
E. Zohar, T.B. Wahl, M. Burrello, and J.I. Cirac, Ann. Phys. 374, 84-137 (2016)
E. Zohar, J.I. Cirac, Phys. Rev. D 97, 034510 (2018)



Locally gauge invariant fermionic PEPS

• We We wish to describe PEPS of fermionic matter coupled to dynamical 
gauge fields.

• Starting point – Gaussian fermionic PEPS with a global symmetry.

– Gaussian states – ground states of quadratic Hamiltonians, completely 
described by their covariance matrix. Very easy to handle analytically with the 
use of the Gaussian formalism.

– Fermionic PEPS – defined with fermionic creation operators acting on the Fock 
vacuum. Easy to parameterize if they are Gaussian.

• Start with these, then make the symmetry local and add the gauge field.
Similar to minimal coupling: Gauge a free matter state  obtain an 
interacting matter-gauge field state.

E. Zohar, M. Burrello, T.B. Wahl, and J.I. Cirac, Ann. Phys. 363, 385-439 (2015)
E. Zohar, T.B. Wahl, M. Burrello, and J.I. Cirac, Ann. Phys. 374, 84-137 (2016)
E. Zohar, J.I. Cirac, Phys. Rev. D 97, 034510 (2018)



Gauging the Gaussian fermionic PEPS
• The state is not Gaussian anymore,

but rather a “generalized Gaussian state”

• Gaussian mapping and formalism are generally not valid, but 
the parameterization of the original states “survives”:

– Translation invariance  Charge conjugation

– Rotation invariance  Rotation invariance

– Global invariance  Local gauge invariance:

• “Virtual Gauss law”  Physical Gauss laws

E. Zohar, M. Burrello, T.B. Wahl, and J.I. Cirac, Ann. Phys. 363, 385-439 (2015)
E. Zohar, T.B. Wahl, M. Burrello, and J.I. Cirac, Ann. Phys. 374, 84-137 (2016)



Example: The phases of the pure gauge theory – U(1)

B,C,D – clear results from the Wilson loops
(also from other computations, such as
the Creutz parameter)

A,D – also some analytical results from 1/z or 1/y
expansions.

E. Zohar, M. Burrello, T.B. Wahl, and J.I. Cirac, Ann. Phys. 363, 385-439 (2015)



Example: The phases of the pure gauge theory – SU(2)

Perimeter law everywhere (Numerical calculation + perturbative expansions 
where applicable)

I – gapped – “Higgs”-like
II – gapless – “Coulomb”-like

Supported by flux line configuration observations:

E. Zohar, T.B. Wahl, M. Burrello, and J.I. Cirac, Ann. Phys. 374, 84-137 (2016)



MPS – Numerical Approach

• Mostly in 1+1d, combining MPS (Matrix Product States) with White’s DMRG 
(Density Matrix Renormalization Group); have been widely and successfully 
used for various many body models, mostly from condensed matter, for
– Variational studies of ground states

– Thermal equilibrium properties

– Dynamics

• Very successfully applied to 1+1d lattice gauge theories

• High dimensional generalizations: challenging and demanding scaling, 
generally unavailable (see, however, recent works by Corboz)



Monte Carlo with gauged Gaussian fPEPS

• It is possible to express our states in a basis, that allows one 
to perform efficient Monte-Carlo calculations

- is a fixed configuration state of the gauge field on the links.

- is a fermionic Gaussian state, representing fermions coupled 
to a static, background gauge field .

E. Zohar, J.I. Cirac, Phys. Rev. D 97, 034510 



Monte Carlo with gauged Gaussian fPEPS

• It is possible to express our states in a basis, that allows one 
to perform efficient Monte-Carlo calculations

- Configuration states are eigenstates of functions of group 
element operators:

E. Zohar, J.I. Cirac, Phys. Rev. D 97, 034510 



Monte Carlo with gauged Gaussian fPEPS

• Wilson Loops:

a

- exp. value for                                                    :

E. Zohar, J.I. Cirac, Phys. Rev. D 97, 034510 



Monte Carlo with gauged Gaussian fPEPS

• Wilson Loops:

a

- exp. value for                                                    :

• The function

is a probability density.

E. Zohar, J.I. Cirac, Phys. Rev. D 97, 034510 



Monte Carlo with gauged Gaussian fPEPS

• Wilson Loops:

a

- exp. value for                                                    :

• The fermionic calculation is easy, through the gaussian
formalism: very efficient, no sign problem

E. Zohar, J.I. Cirac, Phys. Rev. D 97, 034510 

Monte Carlo integration!



Monte Carlo with gauged Gaussian fPEPS

• The method is extendable to further physical observables (e.g. 
mesonic operators and electric energy operators), always 
involving the probability density function

and possibly elements of the covariance matrix of the 
Gaussian state , which could be calculated very 
efficiently.

• It is possible to contract gauged Gaussian fPEPS beyond 
1+1d, and without the sign problem of conventional LGT 
methods (it is not a Euclidean path integral).

E. Zohar, J.I. Cirac, Phys. Rev. D 97, 034510 



Illustration: phase diagram of pure gauge Z3 PEPS in 2+1d

MC, 8x8

Exact contraction

E. Zohar, M. Burrello, T.B. Wahl, and J.I. Cirac, Ann. Phys. 363, 385-439 (2015)

E. Zohar, J.I. Cirac, Phys. Rev. D 97, 034510 



Summary

• Lattice gauge theories may be simulated by ultracold atoms 
in optical lattices. Gauge invariance may be obtained using 
several methods.

• PEPS are very useful for the study of many body systems with 
symmetries – even when the symmetries are local.

• The gauged gaussian fermionic PEPS construction could be 
combined with Monte Carlo methods for numerical studies 
in larger systems and higher dimensions, without the sign 
problem, and overcoming the scaling problems of extending 
MPS+DMRG to more than 1+1d.

For detailed lecture notes on the topics discussed in this talk, see
Gauss law, Minimal Coupling and Fermionic PEPS for Lattice Gauge Theories

E. Zohar, arXiv:1807.01294 (2018)


