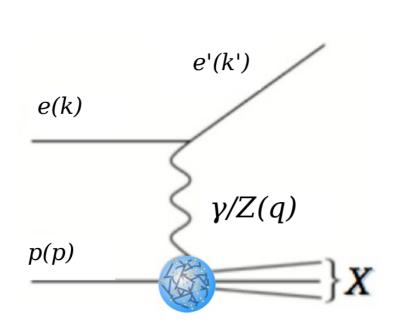
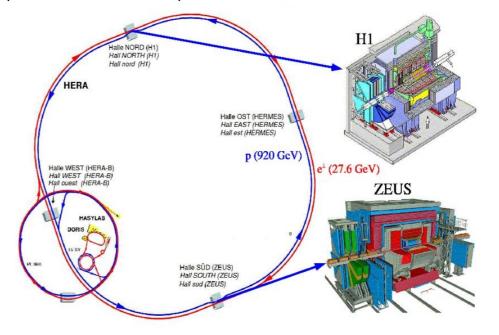
Jets at HERA: New look using NNLO

Radek Žlebčík¹

¹ Deutsches Elektronen-Synchrotron (DESY)

BNL, July 23




DESY-17-137 Eur.Phys.J.C77 (2017), 791 [arxiv:1709.07251] DESY-18-054 Eur.Phys.J.C78 (2018), 538 [arxiv:1804.05663]

HERA Collider

- The only existing ep collider (1992 2007)
- About **0.5 fb**⁻¹ of data per experiment
- Two multi-purpose detectors (H1 + ZEUS)

$${
m e^{\pm}}$$
 + p 27.6 GeV + 920 GeV $\sqrt{s}=319\,{
m GeV}$

Inelasticity

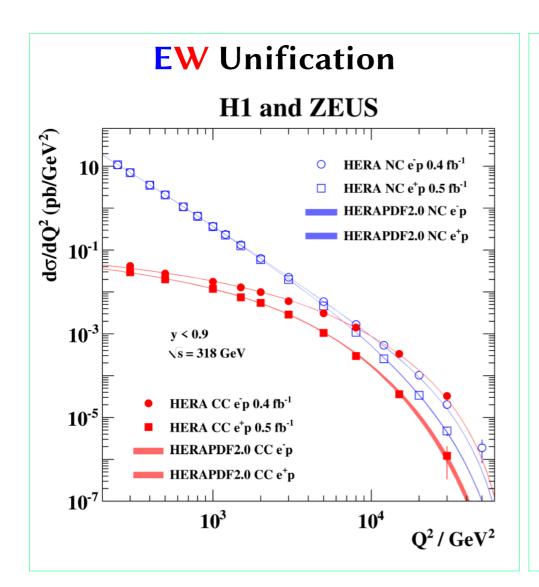
$$y = \frac{p \cdot q}{p \cdot k}$$

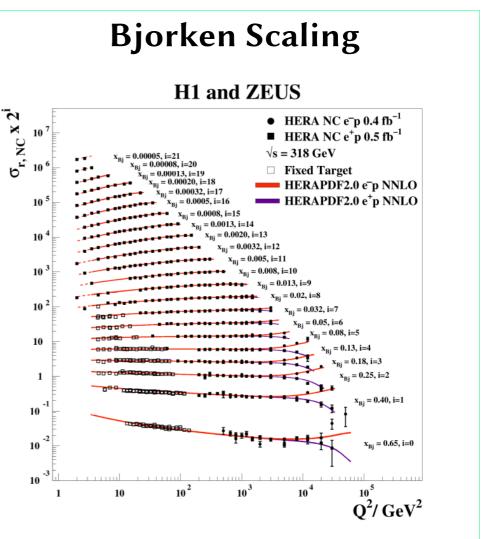
Photon virtuality

$$Q^2 = -(k - k')^2$$

 $Q^2 \approx 0$

Photoproduction

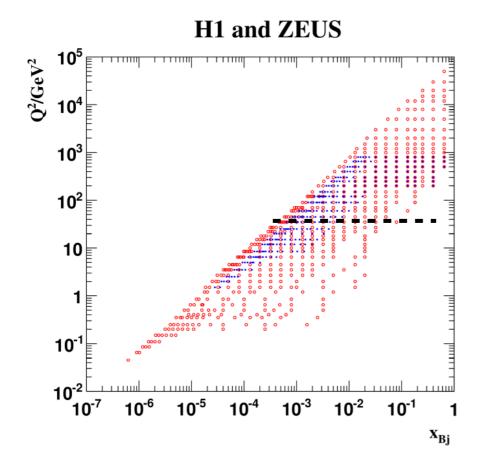

 $Q^2 \gg 0$

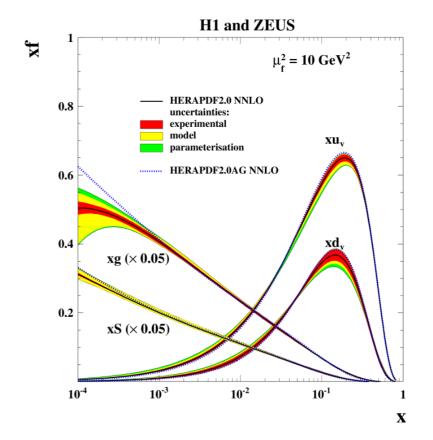

Deep-inelastic scattering (DIS)

HERA Legacy

• Combined HERA NC+CC inclusive reduced cross sections (0.5 fb⁻¹ per experiment)

[arxiv:1506.06042]

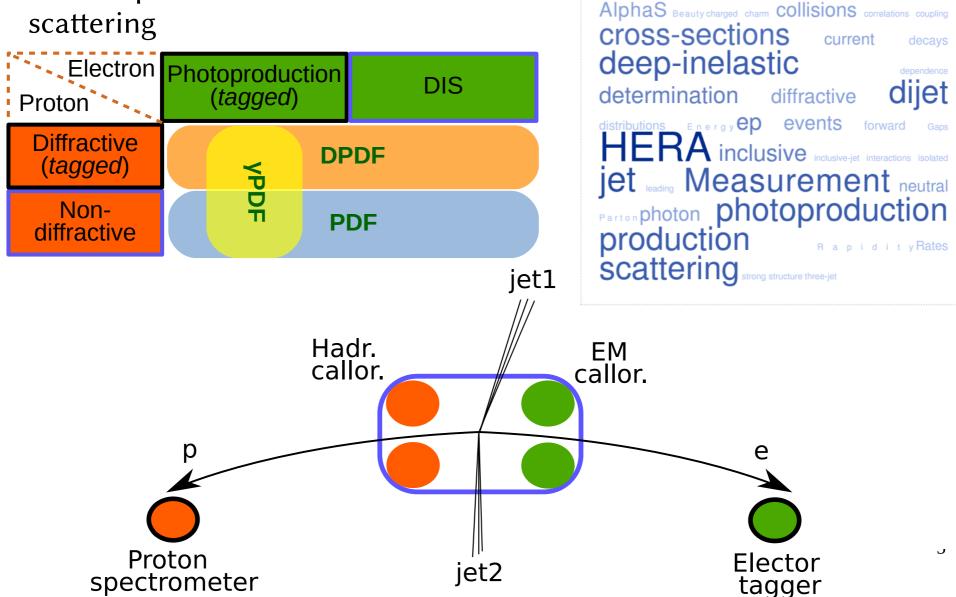



HERA Legacy

[arxiv:1506.06042]

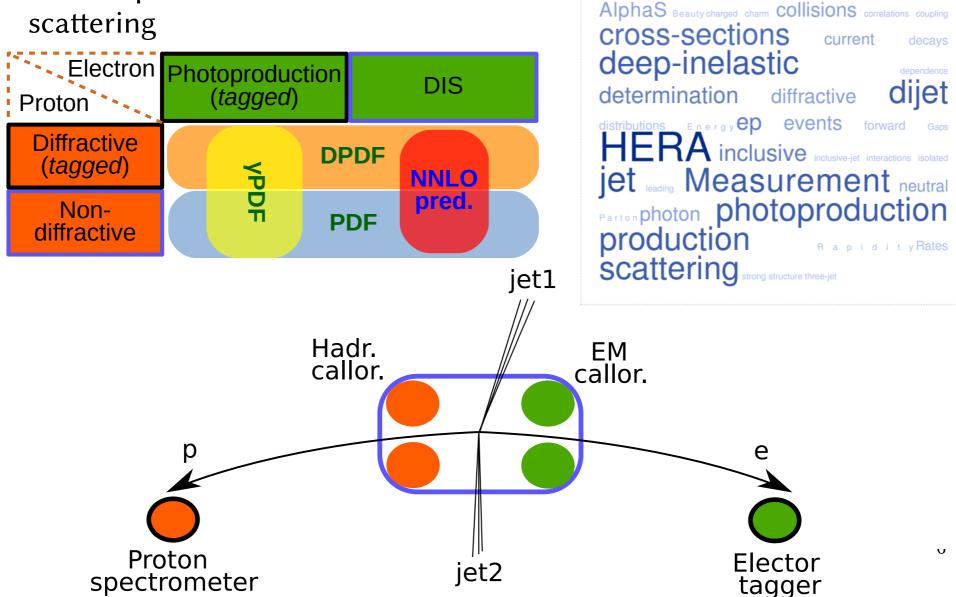
 Large coverage in x, Q²
 limitation due to beam energy and acceptance

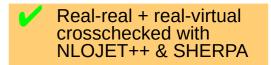
 HERAPDF2.0 QCD fit based exclusively on HERA inclusive DIS data



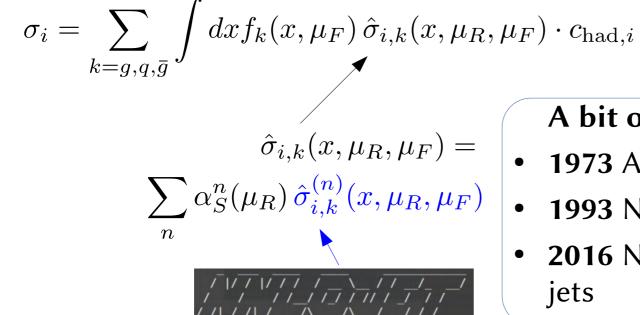
Jet production at HERA

In total 118 Jet analyses from HERA


 Basic classification according the state of proton and electron after scattering


Jet production at HERA

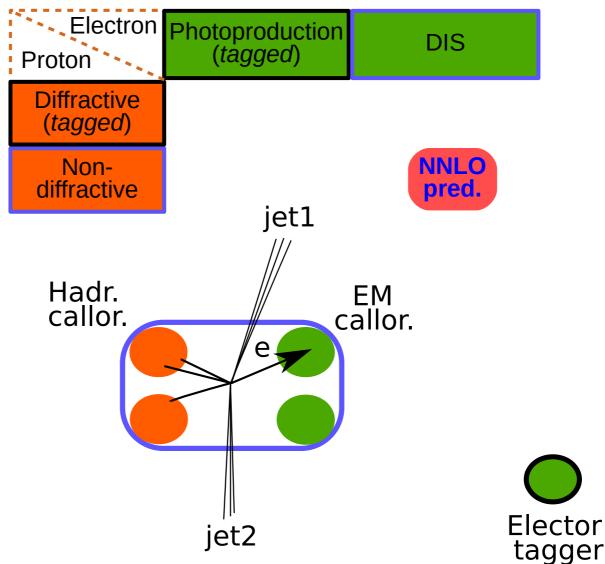
In total 118 Jet analyses from HERA


 Basic classification according the state of proton and electron after scattering



NNLO calculations

- New NNLO predictions for ep dijets based on antenna subtraction
 J. Currie, T. Gehrmann, A. Huss and J. Niehues, JHEP 07 (2017) 018, [1703.05977]
- Matrix element tables precalculated by NNLOJET program (~100 CPU years)
- Then convoluted with PDFs and α_S with **fastNLO** using the **APPLfast** interface (<1s)


A bit of history

- 1973 Asymptotic freedom of QCD
- 1993 NLO studies of DIS jets
- 2016 NNLO corrections for DIS jets

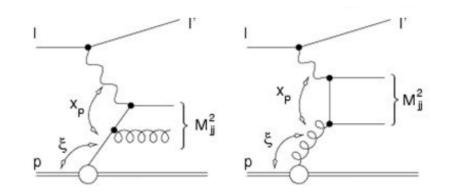
7

Jets in DIS at NNLO

- Predictions
- $\sim \alpha_{\rm S}$ fit
- PDF fit

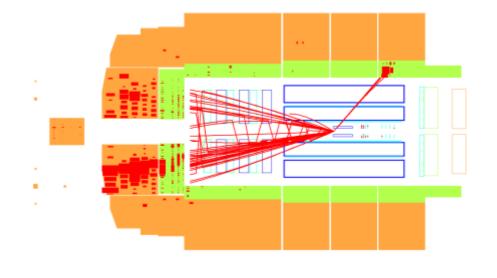
NNLO α_S fit of H1 jets data in DIS

Why α_S ?


Among the least known SM parameters

$$G_F = 1.1663787(6) \times 10^{-5} \,\mathrm{GeV}^{-2}$$

 $\alpha_S = 1.181(11) \times 10^{-1} \,\mathrm{[PDG16]}$


Great importance for LHC physics

Why now?

- NNLO revolution in the last years
- NNLO predictions now available for both *pp* and *ep* dijets
- Complementary to the α_S extraction in pp at intermediate scales $7 < \mu < 80 \, \mathrm{GeV}$

Dijet DIS production at H1

The data-sets used in NNLO QCD analysis

Data set	\sqrt{s}	\mathcal{L}	DIS kinematic	Inclusive jets	Dijets
[ref.]	$[\mathrm{GeV}]$	$[\mathrm{pb}^{-1}]$	range		$n_{\rm jets} \ge 2$
$300\mathrm{GeV}$	300	33	$150 < Q^2 < 5000 \mathrm{GeV}^2$	$7 < P_{\mathrm{T}}^{\mathrm{jet}} < 50 \mathrm{GeV}$	$P_{\mathrm{T}}^{\mathrm{jet}} > 7 \mathrm{GeV}$
[17]			0.2 < y < 0.6		$8.5 < \langle P_{\rm T} \rangle < 35 {\rm GeV}$
HERA-I	319	43.5	$5 < Q^2 < 100 \mathrm{GeV}^2$	$5 < P_{\mathrm{T}}^{\mathrm{jet}} < 80 \mathrm{GeV}$	$5 < P_{\mathrm{T}}^{\mathrm{jet}} < 50 \mathrm{GeV}$
[23]			0.2 < y < 0.7		$5 < \langle P_{\rm T} \rangle < 80 {\rm GeV}$
					$m_{12} > 18 \mathrm{GeV}$
					$(\langle P_{\rm T} \rangle > 7 {\rm GeV})^*$
HERA-I	319	65.4	$150 < Q^2 < 15000 \mathrm{GeV}^2$	$5 < P_{\mathrm{T}}^{\mathrm{jet}} < 50 \mathrm{GeV}$	_
[21]			0.2 < y < 0.7		
HERA-II	319	290	$5.5 < Q^2 < 80 \mathrm{GeV}^2$	$4.5 < P_{\rm T}^{ m jet} < 50{ m GeV}$	$P_{\mathrm{T}}^{\mathrm{jet}} > 4 \mathrm{GeV}$
[15]			0.2 < y < 0.6		$5 < \langle P_{\rm T} \rangle < 50 {\rm GeV}$
HERA-II	319	351	$150 < Q^2 < 15000 \mathrm{GeV}^2$	$5 < P_{\mathrm{T}}^{\mathrm{jet}} < 50 \mathrm{GeV}$	$5 < P_{\mathrm{T}}^{\mathrm{jet}} < 50 \mathrm{GeV}$
[15,24]			0.2 < y < 0.7		$7 < \langle P_{\mathrm{T}} \rangle < 50 \mathrm{GeV}$
					$m_{12} > 16 \mathrm{GeV}$

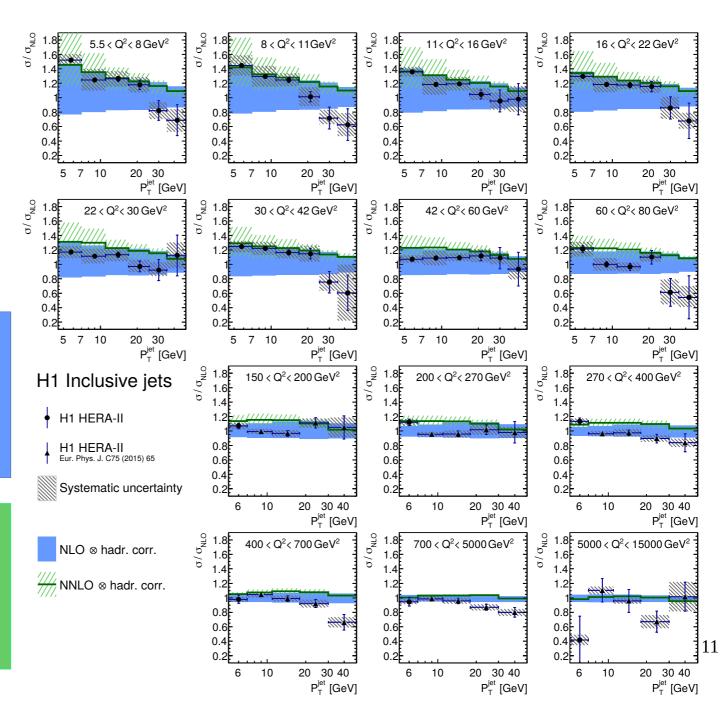
Inclusive jets (H1 HERA-II)

Double-diff.

- $ullet \ Q^2$ and $p_T^{
 m jet}$
- Phase space:

$$0.2 < y < 0.6$$

 $-1 < \eta_{\text{lab}}^{\text{jet}} < 2.5$


jets found in $\gamma^* p$ with k_{τ} algo (R=1)

NLO predictions

- NNPDF 3.0 NLO
- Larger scale unc.
- Chi2/ndf = 1.7

NNLO predictions

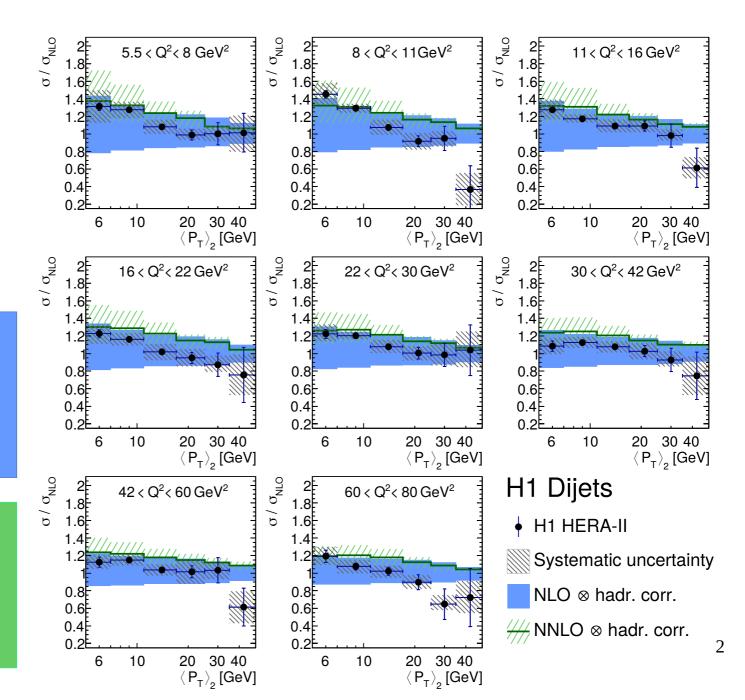
- NNPDF 3.0 NNLO
- Smaller scale unc.
- Chi2/ndf = 1.3

Dijets (H1 HERA-II)

Double-diff.

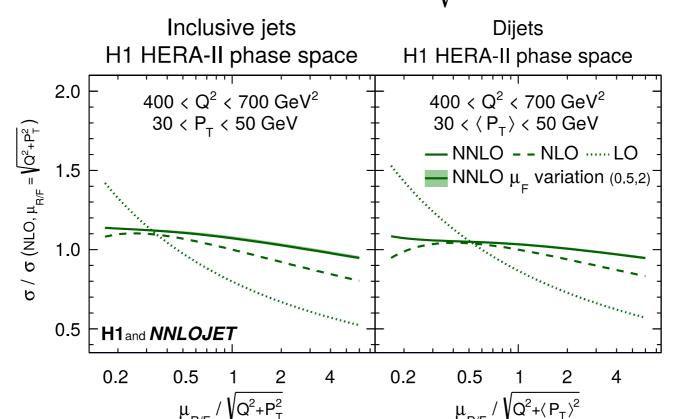
- Q^2 and $\langle p_T \rangle_2$
- Mean dijet p_T

$$\langle p_T \rangle_2 = \frac{p_T^{\text{jet1}} + p_T^{\text{jet2}}}{2}$$


jets found in $\gamma^* p$ with $k_{\scriptscriptstyle T}$ algo (R=1)

NLO predictions

- NNPDF 3.0 NLO
- Larger scale unc.
- Chi2/ndf = 1.4


NNLO predictions

- NNPDF 3.0 NNLO
- Smaller scale unc.
- Chi2/ndf = 0.6

Scale dependence

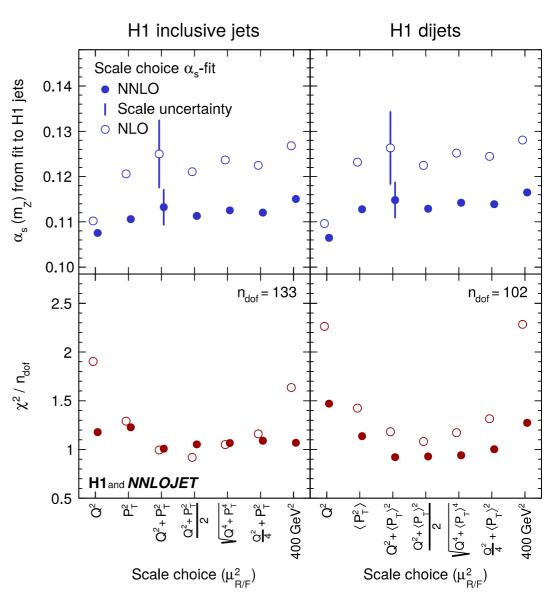
- The NNLO predictions depend **less** on the renormalization scale (=have smaller theor. unc.)
- To estimate the uncertainty the scale varied up and down by the factor of 2
- As a scale we use $\mu_R=\mu_F=\sqrt{Q^2+p_T^2}$ Others functional forms also tested

Functional form of the scale

- 7 possible function studied
- NNLO α_S is typically smaller than the NLO one
- The NNLO χ^2 is typically better
- NNLO scale unc. is smaller

$$\mu^{2} = Q^{2}$$

$$\mu^{2} = p_{T}^{2}$$


$$\mu^{2} = Q^{2} + p_{T}^{2}$$

$$\mu^{2} = \frac{Q^{2} + p_{T}^{2}}{2}$$

$$\mu^{2} = \sqrt{Q^{4} + p_{T}^{4}}$$

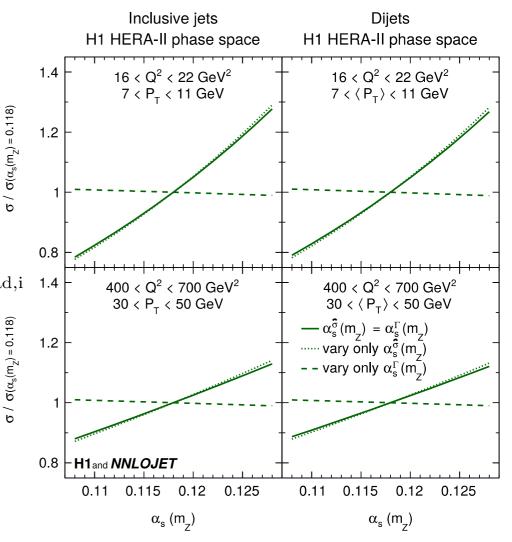
$$\mu^{2} = Q^{2}/4 + p_{T}^{2}$$

$$\mu^{2} = 400 \,\text{GeV}^{2}$$

α_S in PDF and α_S in ME

- Alpha strong affects both,
 PDFs and matrix element
- Both effects considered, α_S in ME more prominent

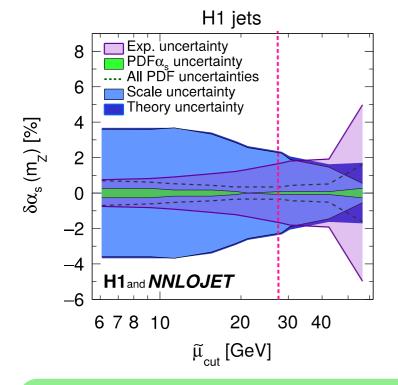
$$\sigma_{i} = \sum_{k=g,q,\bar{q}} \int dx \begin{cases} \alpha_{S} \text{ dep.} \\ f_{k}(x,\mu_{F}) \end{cases} \hat{\sigma}_{i,k}(x,\mu_{R},\mu_{F}) \cdot c_{\text{had,i}}$$

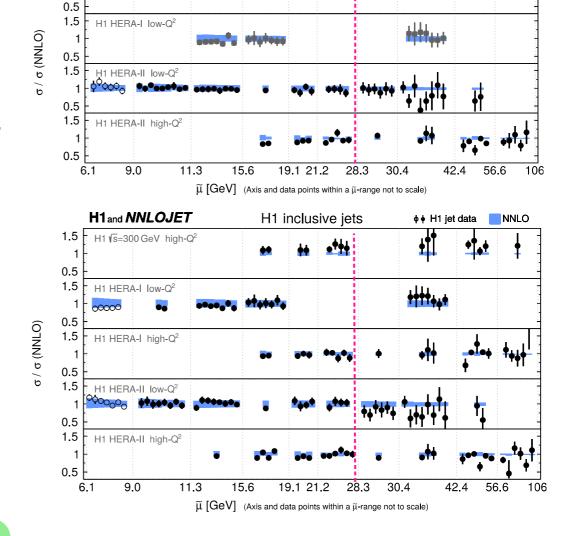

$$\hat{\sigma}_{i,k}(x,\mu_R,\mu_F) = \sum_{n} \alpha_S^n(\mu_R) \,\hat{\sigma}_{i,k}^{(n)}(x,\mu_R,\mu_F)$$

DGLAP equations

$$\mu_F^2 \frac{df}{d\mu_F^2} = P(z, \alpha_s) \otimes f(x, \mu_F^2)$$

PDFs at scale $\mu_0 = 20 \, \mathrm{GeV}$ very well constrained by lot of data $\rightarrow \alpha_S$ - "independent"

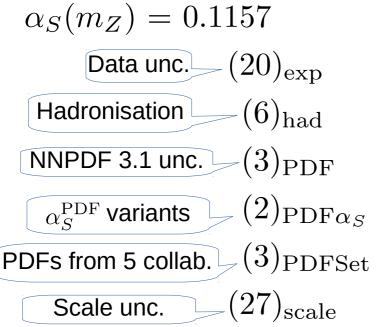

Original PDFs at scale $\mu_0 = 20 \, \mathrm{GeV}$ evolved to higher/lower scales by DGLAP with $\alpha_S = \alpha_S(\mathrm{fit\ par.})$


Which data do we use in the fit?

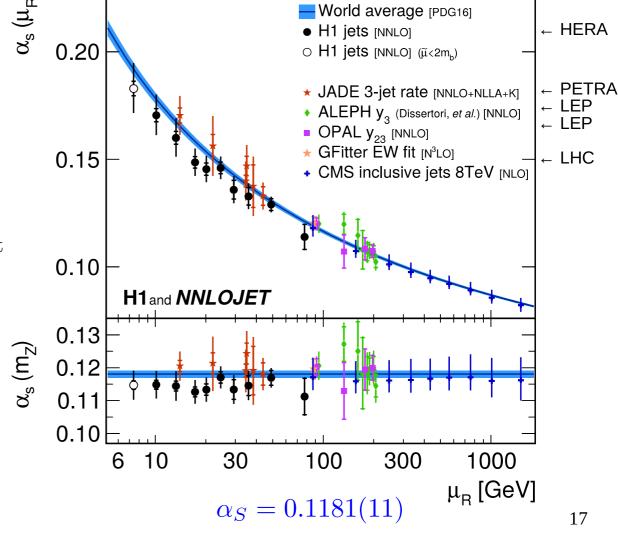
H1 and NNLOJET

H1 √s=300 GeV high-Q2

- The scale uncertainty gets higher with smaller scales ($\mu = \sqrt{p_T^2 + Q^2}$)
- We use only data $\mu > \mu_{\rm cut}$


H1 diiets

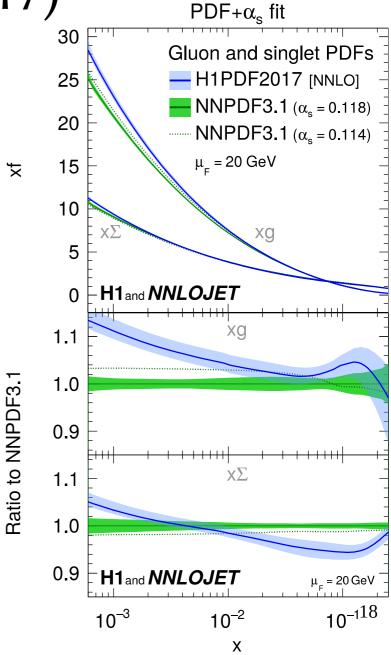
NNLO


Small $\mu_{\rm cut} \rightarrow$ high theor. unc. Large $\mu_{\rm cut} \rightarrow$ high exp. unc.

Alpha strong running and central value

- Scale and experimental unc. dominant
- Consistent with PDG "world average" value

Simultaneous α_S + PDF fit (H1PDF2017)


- HERAPDF-like parametrization with 12 parameters at the starting scale $\mu_0^2=1.9\,\mathrm{GeV}^2$
- Only data with $Q^2 > 10 \,\mathrm{GeV}^2$
- The $\alpha_{\rm S}$ taken as an additional free parameter of the fit
- Experimental, scale, parametrization and model uncertainty considered

Normalized jet data

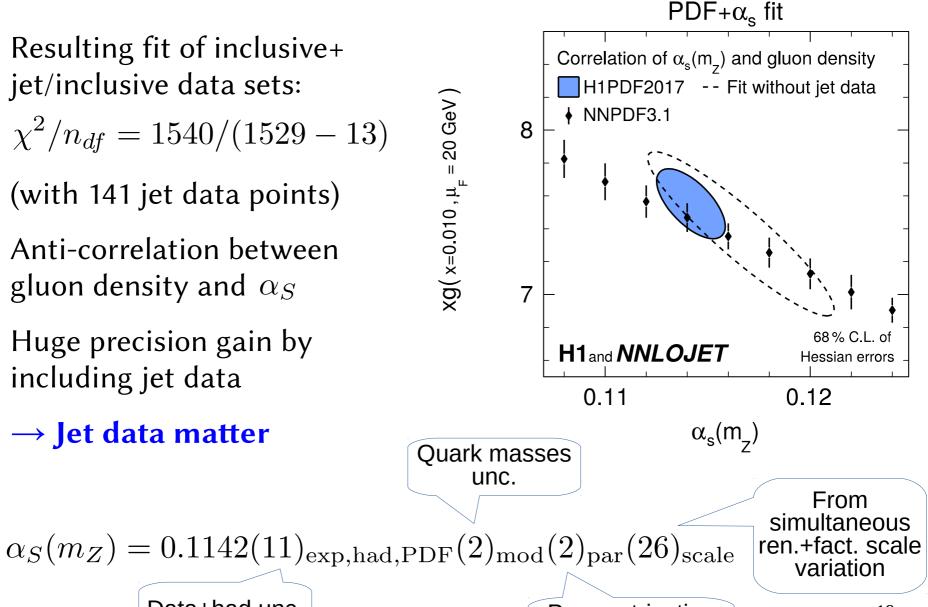
Data set	Oata set Q^2 domain		Inclusive Dijets		Normalised	Stat. corr.	
[ref.]		jets		inclusive jets	dijets	between samples	
300 GeV [17]	$high-Q^2$	✓	✓	_	_	_	
HERA-I [23]	$low-Q^2$	\checkmark	\checkmark		_	_	
HERA-I [21]	${ m high}$ - Q^2	\checkmark	_	✓	_	_	
HERA-II [15]	$\text{low-}Q^2$	\checkmark	\checkmark	✓	✓	✓	
$\mathrm{HERA\text{-}II} \ \ [15,24]$	${\it high-}Q^2$	\checkmark	\checkmark	\checkmark	\checkmark	✓	

Inclusive NC+CC

Data set	Lepton	\sqrt{s}	Q^2 range	NC cross	CC cross	Lepton beam
[ref.]	$_{\mathrm{type}}$	[GeV]	$[{ m GeV}^2]$	sections	sections	polarisation
Combined low- Q^2 [64]	e^+	301,319	(0.5) 12 – 150	√	-	-
Combined low- E_p [64]	e^+	$225,\!252$	(1.5) 12 $-$ 90	✓	_	-
$94-97\ [61]$	e^+	301	150-30000	✓	\checkmark	-
98 - 99 [62, 63]	e^{-}	319	150 - 30000	✓	\checkmark	-
99 - 00 [63]	e^+	319	150 - 30000	✓	\checkmark	-
HERA-II [65]	e^+	319	120 - 30000	✓	\checkmark	✓
HERA-II [65]	e^{-}	319	120-50000	✓	✓	✓

Simultaneous PDF + α_S fit

= 20 GeV

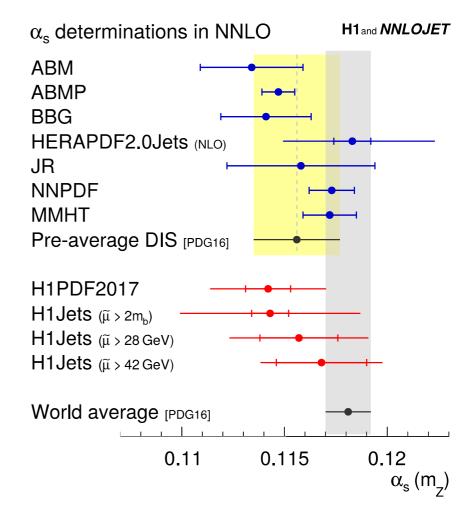

xg(x=0.010, μ_F

 Resulting fit of inclusive+ jet/inclusive data sets:

$$\chi^2/n_{df} = 1540/(1529 - 13)$$

(with 141 jet data points)

- Anti-correlation between gluon density and α_S
- Huge precision gain by including jet data
 - → Jet data matter

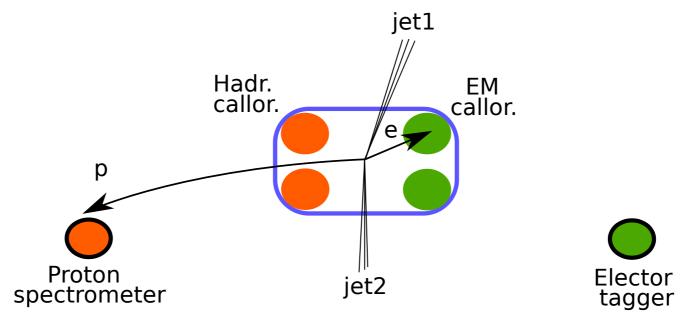

Data+had unc.

Parametrization unc.

19

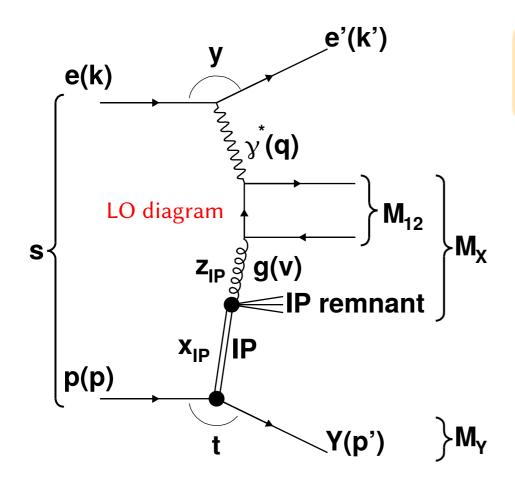
Alpha strong values

- Both values of α_S consistent with α_S from global PDF fits
- The NNLO reduces the scale uncertainty by half
- The theoretical uncertainty (scale) still dominates
- The indication for lower α_S values when low-scale data included
 - → missing higher orders?


$$\alpha_S^{\text{H1jets},\tilde{\mu}>28\text{GeV}}(m_Z) = 0.1157(20)_{\text{exp}}(28)_{\text{theor.}}$$

$$\alpha_S^{\text{H1PDF2017}}(m_Z) = 0.1142(11)_{\text{exp}}(26)_{\text{theor.}}$$

Jets in DDIS at NNLO


- Predictions
- $\alpha_{\rm S}$ fit
- Position of the property of

Diffractive Dijet Production in ep

In diffractive events the beam proton stays intact or dissociates into low mass hadronic system Y

At HERA about 10% of low-x events are diffractive

DIS variables:

$$Q^2 = -(k - k')^2 \qquad y = \frac{p \cdot q}{p \cdot k}$$

Dijet mass: M_{12}

Diffractive variables:

$$x_{IP} = 1 - \frac{E_p'}{E_p}$$
 $t = (p - p')^2$

At LO: The momentum fraction entering the hard subprocess with respect to the diffractive exchange $$M_{12}^2+Q^2$$

$$z_{IP} = \frac{M_{12}^2 + Q^2}{M_X^2 + Q^2}$$

Collinear QCD factorization theorem in hard diffraction

- For diffractive events with a **hard scale** (e.g Q^2 or jets p_T)
- Factorization of the diffractive cross section into process independent DPDFs and partonic cross sections

$$d\sigma(ep \to epX) = \sum_{i} f_i^D(x, Q^2, x_{IP}, t) \otimes d\sigma^{ie}(x, Q^2)$$

• For diffractive processes (including dijets) with Q² high enough factorization proven by Collins within perturbative QCD, for low Q² factorization breaking suggested

Factorization of Hard Processes in QCD

John C. Collins (IIT, Chicago & SUNY, Stony Brook), Davison E. Soper (Oregon U.), George F. Sterman (SUNY, Stony Brook). May 30, 1989. 91 pp. Published in Adv.Ser.Direct.High Energy Phys. 5 (1989) 1-91 ITP-SB-89-31

DOI: <u>10.1142/9789814503266_0001</u> e-Print: <u>hep-ph/0409313</u> | PDF

References | BibTeX | LaTeX(US) | LaTeX(EU) | Harvmac | EndNote
ADS Abstract Service

Detailed record - Cited by 812 records 500+

Proof of factorization for diffractive hard scattering

John C. Collins (Penn State U.). Sep 1997. 12 pp.
Published in Phys.Rev. D57 (1998) 3051-3056, Erratum: Phys.Rev. D61 (2000) 019902

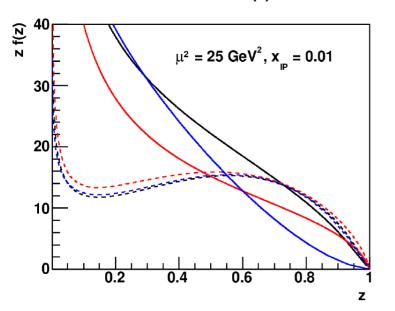
PSU-TH-189

DOI: 10.1103/PhysRevD.57.3051, 10.1103/PhysRevD.61.019902 e-Print: hep-ph/9709499 | PDF

References | BibTeX | LaTeX(US) | LaTeX(EU) | Harvmac | EndNote ADS Abstract Service; OSTI.gov Server

Detailed record - Cited by 404 records 250+

NLO DPDFs

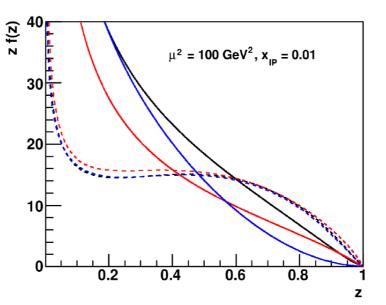

- DPDF sets differ mainly in gluon component which is weekly constrain from inclusive diffractive data
- For gluon dominated diffractive dijet production we have sizable DPDF uncertainty
- DPDFs obey standard DGLAP evolution equation

Quark Singlet Densities

----- H1 Fit B - $z \Sigma(z)$

----- H1 Fit Jets - $z \Sigma(z)$

ZEUS SJ - z $\Sigma(z) \times 1.2$



Gluon Densities

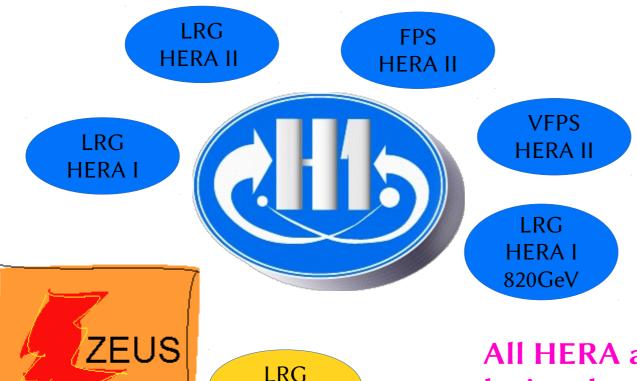
—— H1 Fit B - z G(z)

—— H1 Fit Jets - z G(z)

--- ZEUS SJ - z G(z) \times 1.2

Fits of **inclusive** data

H1 2006 Fit A H1 2006 Fit B MRW DPDF


Combined inclusive + dijets data fits

H1 2007 Fit Jets ZEUS 2009 Fit SJ

70% of diffractive exchange momentum carried by gluons

The DIS dijets measurements

- 5times e+p 27.6 GeV + 920 GeV 1times e+p 27.5 GeV + 820 GeV
- 4times Large rapidity gap selection (LRG)
 2times Proton spectrometer (FPS, VFPS)

HERA I

H1 LRG HERA II Phase Space

$$4 < Q^2 < 100 \text{ GeV}^2$$

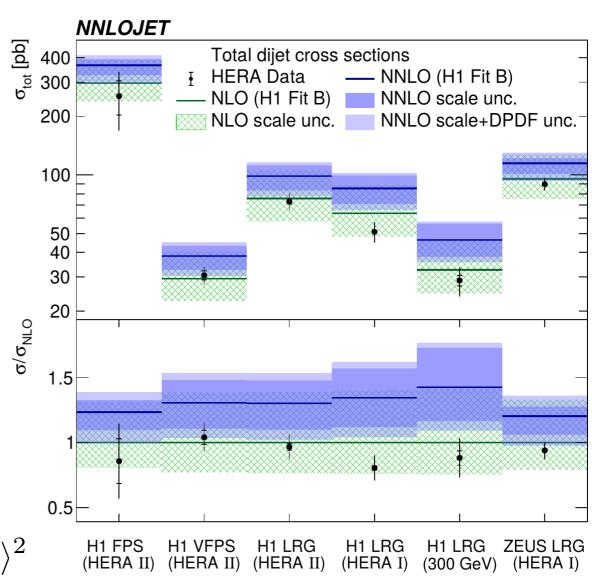
$$x_{I\!\!P} < 0.03$$

$$|t| < 1 \text{ GeV}^2$$

$$M_Y < 1.6 \text{ GeV}$$

$$p_{\rm T.1}^* > 5.5 {\rm ~GeV}$$

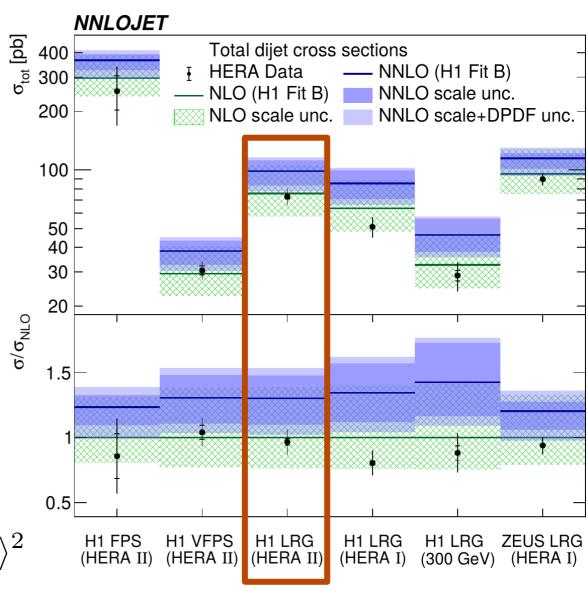
$$p_{\rm T.2}^* > 4.0~{\rm GeV}$$


$$-1 < \eta_{1,2}^{\text{lab}} < 2$$

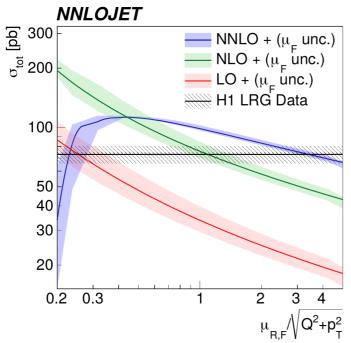
All HERA analyses using k_T -jet algorithm (R=1) and asymmetric jet p_T cuts

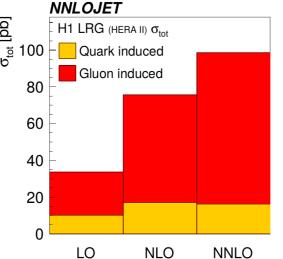
Total Cross Sections - NLO vs NNLO

- For NNLO the inner bar represents the scale uncertainty, the outer includes DPDF uncertainties
- Total cross sections well described by NLO
- NNLO predictions systematically overestimate the data (NNLO/NLO phase space dependent)

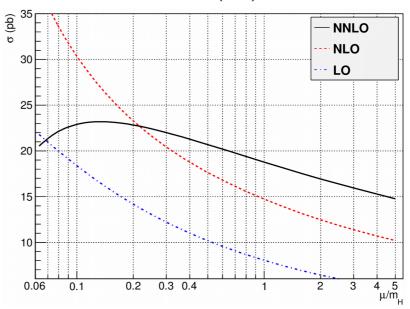

$$\mu_R^2 = \mu_F^2 = Q^2 + \langle p_T^{*jets} \rangle^2$$

Total Cross Sections - NLO vs NNLO


- For NNLO the inner bar represents the scale uncertainty, the outer includes DPDF uncertainties
- Total cross sections well described by NLO
- NNLO predictions systematically overestimate the data (NNLO/NLO phase space dependent)

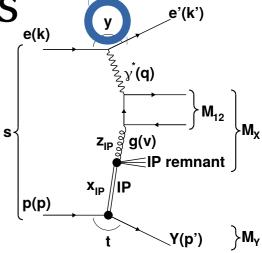

$$\mu_R^2 = \mu_F^2 = Q^2 + \langle p_T^{*\rm jets} \rangle^2$$

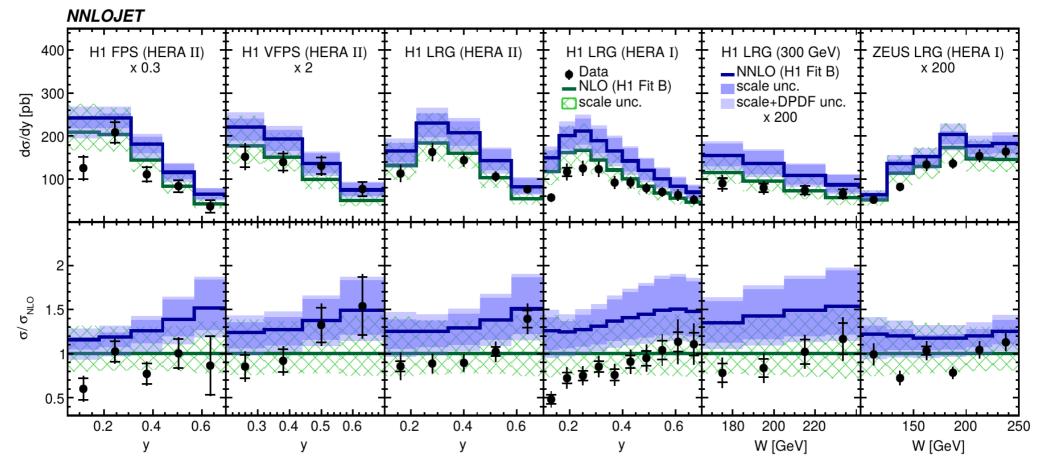
Total Cross Sections - Scale dependence


Jets in DDIS ($\sqrt{s} = 320 \text{ GeV}$)

Higgs production in pp ($\sqrt{s} = 8 \text{ TeV}$)

JHEP 1204 (2012) 004

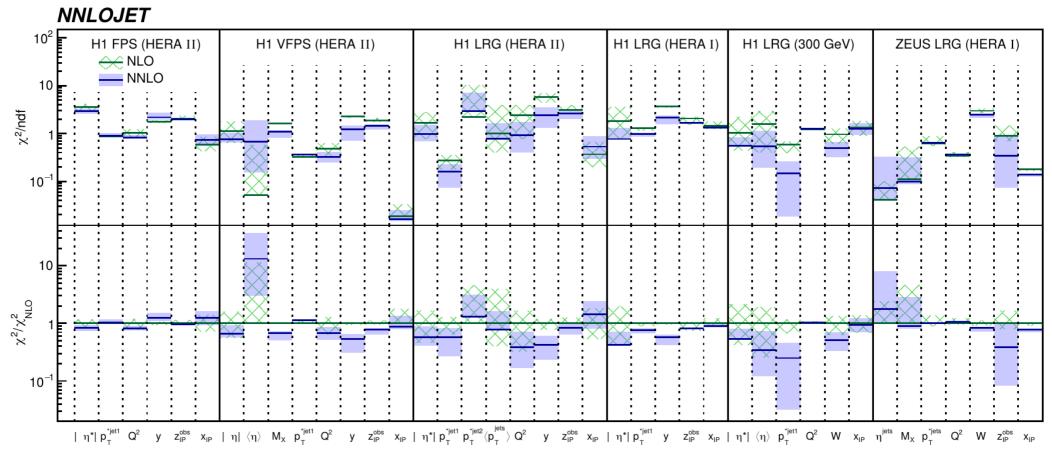

- The gluon-DPDF induced cross section rises gradually with order
- The quark-Induced cross section stagnates at NLO
- At NNLO 84% of the cross section is from gluon DPDF


28

Differential x-sections

• The same or similar distributions from various analyses grouped into one plot, as shown bellow.

• For inelasticity y NNLO higher for higher y, similar trend in data, note $W = \sqrt{ys}$



Chi² comparison

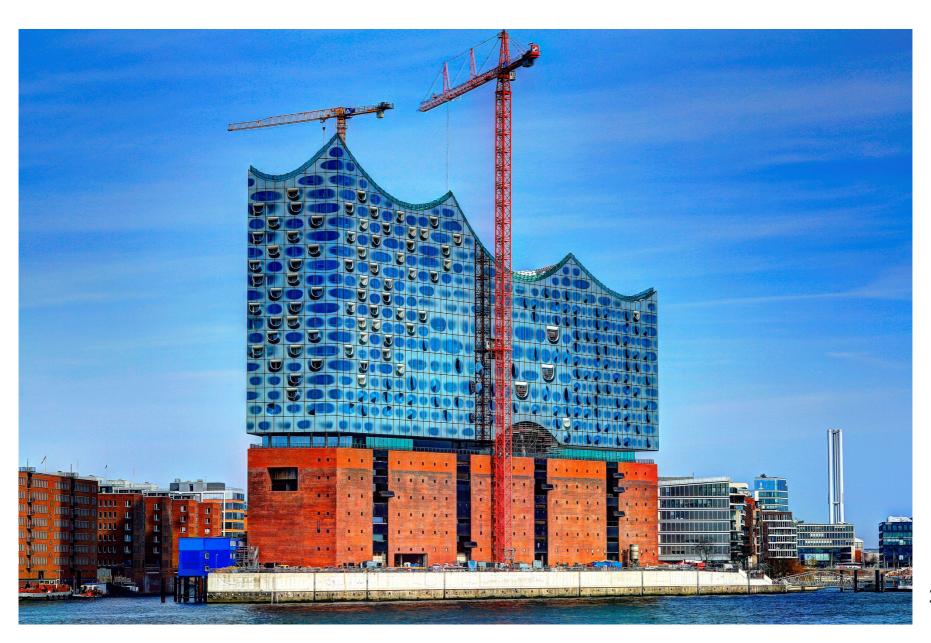
 The NNLO typically describe shapes better (improvement seen for all studied DPDFs)

$$\chi^{2} = \min_{K} \sum_{i,j} \log \frac{\sigma_{i}^{\text{Data}}}{K \sigma_{i}^{(\text{N})\text{NLO}}} (V^{-1})_{ij} \log \frac{\sigma_{j}^{\text{Data}}}{K \sigma_{j}^{(\text{N})\text{NLO}}}$$

Conclusion

- The NNLO predictions available for the first time for jets in (D)DIS
- Comparing to NLO the scale uncertainties are smaller and x-sections typically larger

α_S fit of DIS jets


Subclass	$\alpha_s(M_Z^2)$
τ-decays	0.1192 ± 0.0018
lattice QCD	0.1188 ± 0.0011
structure functions	0.1156 ± 0.0021
e^+e^- [jets & shps]	0.1169 ± 0.0034
hadron collider	$0.1151 \stackrel{+ 0.0028}{_{- 0.0027}}$
ew precision fits	0.1196 ± 0.0030

H1 NNLO jets $\begin{array}{c} \text{0.}1157\pm0.0034\\ \text{H1 NNLO jets+PDF} \end{array}$ $\begin{array}{c} 0.1157\pm0.0034\\ 0.1142\pm0.0028 \end{array}$

Pred. for DDIS jets

- Better description of shapes with NNLO, but normalization off
- Only NLO DPDFs available
- Plan for new combined (inclusive+jet) DPDF fit at NNLO

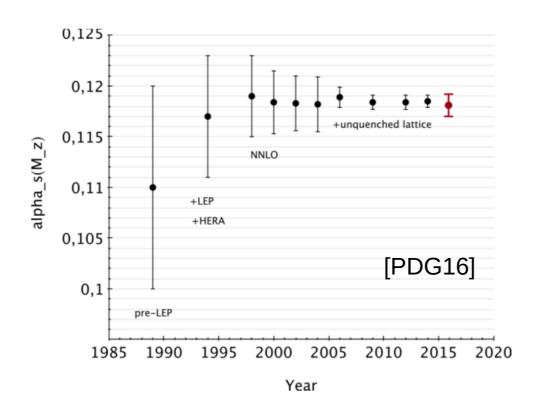
Thank you for your attention

Backup

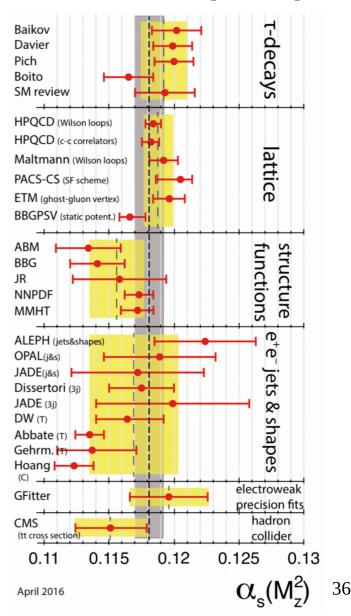
 $\alpha_{\rm s}(m_{
m Z})$ values from H1 jet cross sections

Data	$ ilde{\mu}_{ ext{cut}}$	$lpha_{ m s}(m_{ m Z})$ with uncertainties	h	tot	$\chi^2/n_{ m dof}$
Inclusive jets					
$300{ m GeV}$ high- Q^2	$2m_b$	$0.1221(31)_{\text{exp}}(22)_{\text{had}}(5)_{\text{PDF}}(3)_{\text{PDF}\alpha_{s}}(4)_{\text{PDFset}}(36)_{\text{scale}}$	$(43)_{\mathrm{th}}$	$(53)_{\mathrm{tot}}$	6.5/15
HERA-I low- Q^2	$2m_b$	$0.1093(17)_{\text{exp}}(8)_{\text{had}}(5)_{\text{PDF}}(5)_{\text{PDF}\alpha_s}(7)_{\text{PDFset}}(33)_{\text{scale}}$	$(35)_{ m th}$	$(39)_{\rm tot}$	17.5/22
${ m HERA} ext{-I high-}Q^2$	$2m_b$	$0.1136(24)_{\text{exp}}(9)_{\text{had}}(6)_{\text{PDF}}(4)_{\text{PDF}\alpha_s}(4)_{\text{PDFset}}(31)_{\text{scale}}$	$(33)_{\mathrm{th}}$	$(41)_{\rm tot}$	14.7/23
HERA-II low- Q^2	$2m_b$	$0.1187 (18)_{\text{exp}} (8)_{\text{had}} (4)_{\text{PDF}} (4)_{\text{PDF}\alpha_s} (3)_{\text{PDFset}} (45)_{\text{scale}}$	$(46)_{\mathrm{th}}$	$(50)_{\rm tot}$	29.6/40
${ m HERA} ext{-II high-}Q^2$	$2m_b$	$0.1121 (18)_{\text{exp}} (9)_{\text{had}} (5)_{\text{PDF}} (4)_{\text{PDF}\alpha_s} (2)_{\text{PDFset}} (35)_{\text{scale}}$	$(37)_{ m th}$	$(41)_{\rm tot}$	42.5/29
Dijets					
$300{ m GeV}$ high- Q^2	$2m_b$	$0.1213(39)_{\text{exp}}(17)_{\text{had}}(5)_{\text{PDF}}(2)_{\text{PDF}\alpha_{s}}(3)_{\text{PDFset}}(31)_{\text{scale}}$	$(35)_{ m th}$	$(52)_{\rm tot}$	13.6/15
HERA-I low- Q^2	$2m_b$	$0.1101(23)_{\text{exp}}(8)_{\text{had}}(5)_{\text{PDF}}(4)_{\text{PDF}\alpha_s}(5)_{\text{PDFset}}(36)_{\text{scale}}$	$(38)_{\mathrm{th}}$	$(45)_{\rm tot}$	10.4/20
HERA-II low- Q^2	$2m_b$	$0.1173(14)_{\text{exp}}(9)_{\text{had}}(5)_{\text{PDF}}(5)_{\text{PDF}\alpha_s}(3)_{\text{PDFset}}(44)_{\text{scale}}$	$(45)_{ m th}$	$(47)_{\rm tot}$	17.4/41
HERA-II high- Q^2	$2m_b$	$0.1089(21)_{\text{exp}}(7)_{\text{had}}(5)_{\text{PDF}}(3)_{\text{PDF}\alpha_s}(3)_{\text{PDFset}}(25)_{\text{scale}}$	$(27)_{ m th}$	$(34)_{\rm tot}$	28.0/23
H1 inclusive jets	$2m_b$	$0.1132(10)_{\text{exp}}(5)_{\text{had}}(4)_{\text{PDF}}(4)_{\text{PDF}\alpha_s}(2)_{\text{PDFset}}(40)_{\text{scale}}$	$(40)_{\rm th}$	$(42)_{\text{tot}}$	134.0/133
H1 inclusive jets	$28\mathrm{GeV}$	$0.1152(20)_{\text{exp}}(6)_{\text{had}}(2)_{\text{PDF}}(2)_{\text{PDF}\alpha_s}(3)_{\text{PDFset}}(26)_{\text{scale}}$	$(27)_{ m th}$	$(33)_{\rm tot}$	44.1/60
H1 dijets	$2m_b$	$0.1148(11)_{\text{exp}}(6)_{\text{had}}(5)_{\text{PDF}}(4)_{\text{PDF}\alpha_{s}}(4)_{\text{PDFset}}(40)_{\text{scale}}$	$(41)_{\mathrm{th}}$	$(42)_{\rm tot}$	93.9/102
H1 dijets	$28\mathrm{GeV}$	$0.1147(24)_{\text{exp}}(5)_{\text{had}}(3)_{\text{PDF}}(2)_{\text{PDF}\alpha_s}(3)_{\text{PDFset}}(24)_{\text{scale}}$	$(25)_{ m th}$	$(35)_{\rm tot}$	30.8/43
H1 jets	$2m_b$	$0.1143(9)_{\text{exp}}(6)_{\text{had}}(5)_{\text{PDF}}(5)_{\text{PDF}}\alpha_{\text{s}}(4)_{\text{PDFset}}(42)_{\text{scale}}$	$(43)_{\rm th}$	$(44)_{\text{tot}}$	195.0/199
H1 jets	$28\mathrm{GeV}$	$0.1157(20)_{\text{exp}}(6)_{\text{had}}(3)_{\text{PDF}}(2)_{\text{PDF}\alpha_s}(3)_{\text{PDFset}}(27)_{\text{scale}}$	$(28)_{\mathrm{th}}$	$(34)_{\rm tot}$	63.2/90
H1 jets	$42\mathrm{GeV}$	$0.1168(22)_{\text{exp}}(7)_{\text{had}}(2)_{\text{PDF}}(2)_{\text{PDF}\alpha_s}(5)_{\text{PDFset}}(17)_{\text{scale}}$	$(20)_{\mathrm{th}}$	$(30)_{\rm tot}$	37.6/40
H1PDF2017 [NNLO]	$2m_b$	$0.1142(11)_{\text{exp,NP,PDF}}(2)_{\text{mod}}(2)_{\text{par}}(26)_{\text{scale}}$		$(28)_{\rm tot}$	1539.7/1516

Running of the strong coupling

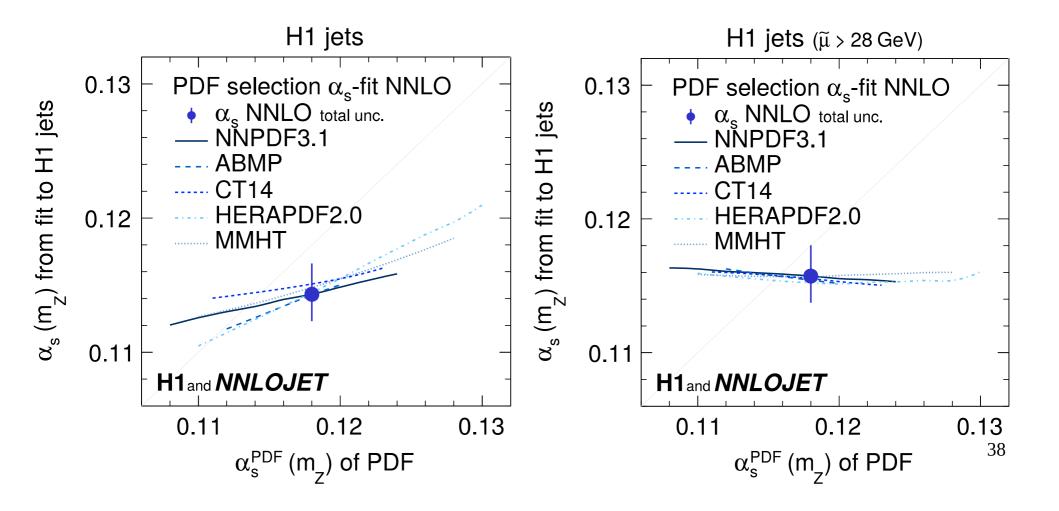

$\mu_{ m R}$	Inclus	sive jets	Di	jets	H1 jets			
[GeV]	$lpha_{ m s}(m_{ m Z})$	$lpha_{ m s}(\mu_{ m R})$	$lpha_{ m s}(m_{ m Z})$	$lpha_{ m s}(\mu_{ m R})$	$lpha_{ m s}(m_{ m Z})$	$lpha_{ m s}(\mu_{ m R})$		
7.4	0.1148 (13) (42)	0.1830(34)(114)	0.1182 (28) (41)	0.1923 (77) (116)	0.1147(13)(43)	0.1829 (34) (114)		
10.1	0.1136(17)(36)	0.1678(39)(81)	0.1169(14)(42)	0.1751(34)(99)	0.1148(14)(40)	0.1705(31)(91)		
13.3	0.1147(15)(43)	0.1605(30)(88)	0.1131(18)(38)	0.1573(36)(76)	0.1144(15)(42)	0.1600(30)(86)		
17.2	0.1130(15)(33)	0.1492(26)(59)	0.1104(19)(30)	0.1445(33)(53)	0.1127(15)(33)	0.1486(27)(59)		
20.1	0.1136(17)(33)	0.1457(29)(56)	0.1116(22)(31)	0.1425(36)(52)	0.1134(17)(33)	0.1454(29)(55)		
24.5	0.1173(17)(30)	0.1463(26)(48)	0.1147(23)(24)	0.1423(36)(38)	0.1171(17)(29)	0.1460(27)(46)		
29.3	0.1084(36)(29)	0.1287(51)(41)	0.1163(34)(34)	0.1401(50)(50)	0.1134(30)(32)	0.1358(44)(46)		
36.0	0.1153(32)(37)	0.1338(43)(50)	0.1135(37)(29)	0.1314(50)(39)	0.1146(30)(33)	0.1328(41)(44)		
49.0	0.1170(22)(20)	0.1290(27)(25)	0.1127(31)(15)	0.1238(37)(18)	0.1169(23)(19)	0.1290(28)(24)		
77.5	0.1111(55)(19)	0.1137(58)(20)	0.1074(84)(19)	0.1099(88)(20)	0.1113(55)(19)	0.1139(58)(20)		

Results for the PDF+ $\alpha_{\rm s}\text{-fit}$


Parameter	Fit result	ult Correlation coefficients												
		$\alpha_{\rm s}(m_{ m Z})$	g_B	g_C	g_D	\tilde{u}_B	\tilde{u}_C	\tilde{u}_E	$ ilde{d}_B$	$ ilde{d}_C$	\bar{U}_C	\bar{D}_A	\bar{D}_B	\bar{D}_C
$\alpha_{ m s}(m_{ m Z})$	0.1142 ± 0.0011	1												
g_B	-0.023 ± 0.035	0.25	1											
g_C	5.69 ± 4.09	-0.08	0.01	1										
g_D	-0.44 ± 4.20	-0.03	-0.10	0.99	1									
$ ilde{u}_B$	0.707 ± 0.036	0.39	0.25	0.05	0.04	1								
$ ilde{u}_C$	4.909 ± 0.096	-0.09	-0.13	0.02	0.03	-0.08	1							
$ ilde{u}_E$	12.7 ± 1.8	-0.03	-0.25	-0.04	-0.01	-0.75	0.57	1						
$ ilde{d}_B$	1.036 ± 0.098	0.24	-0.02	0.06	0.08	0.32	-0.24	-0.24	1					
$ ilde{d}_C$	5.35 ± 0.49	-0.10	-0.07	0.03	0.05	-0.08	-0.24	0.00	0.80	1				
$ar{U}_C$	4.96 ± 0.86	0.32	-0.28	-0.01	0.05	0.76	0.09	-0.39	0.53	0.11	1			
$ar{D}_A$	0.299 ± 0.032	0.29	-0.71	-0.04	0.07	0.32	0.01	-0.08	0.38	0.13	0.71	1		
$ar{D}_B$	-0.091 ± 0.017	0.22	-0.79	-0.05	0.06	0.19	0.03	0.01	0.29	0.09	0.61	0.97	1	
$ar{D}_C$	16.1 ± 3.8	-0.13	-0.51	-0.01	0.08	-0.15	-0.24	-0.06	0.14	0.24	0.05	0.48	0.46	1
g_A	2.84					cons	straine	d by sur	n-rules	,				
$ ilde{u}_A$	4.11					cons	straine	d by sur	n-rules					
$ ilde{d}_A$	6.94					cons	straine	d by sur	n-rules					
$ar{U}_A$	1.80	set equal to $\bar{D}_A(1-f_s)$												
\bar{U}_B	-0.091						set equ	ual to \bar{L}	\hat{D}_B					

History of Alpha Strong

- The current world average value $\alpha_s(m_Z) = 0.1181(11)$
- Mostly driven by lattice and tau-decays
- From LHC the most precise estimate is from ttbar (NNLO)


At least NNLO fits [PDG16]

Dependence on PDF and $\alpha_{\rm S}^{\rm PDF}$

In full H1 jet data sample positive correlation between $\alpha_{\rm S}^{\rm PDF}$ and $\alpha_{\rm S}$

Restricting to $\tilde{\mu} > 28\,\mathrm{GeV}$ makes the α_S -fit uncorrelated to $\alpha_\mathrm{S}^\mathrm{PDF}$

