

Measurement of D mesons in jets in pp and PbPb with the CMS detector

Jing Wang on behalf of the CMS Collaboration

2018 Workshop on Probing Quark-Gluon Matter with Jets 23-25 July 2018 Brookhaven National Laboratory (Upton)

Why study D meson production in jets?

- Enhancement of low p_T light hadrons at large angles about jets
 - Light hadron jet shape analysis

Why study D meson production in jets?

pp 27.4 pb⁻¹ (5.02 TeV) PbPb 404 μb⁻¹ (5.02 TeV)

Phys. Lett. B 730 (2014) 243

Enhancement of low p_T light hadrons at large angles about jets
 Light hadron jet shape analysis

• How to explain

- medium-induced gluon radiation?
- medium response?
- multiple scatterings?

•

Why study D meson production in jets?

pp 27.4 pb⁻¹ (5.02 TeV) PbPb 404 µb⁻¹ (5.02 TeV)

Phys. Lett. B 730 (2014) 243

- Enhancement of low p_T light hadrons at large angles about jets
 Light hadron jet shape analysis
- How to explain
 - medium-induced gluon radiation?
 - → medium response? $m_c \gg T_{QGP}$
 - multiple scatterings?
 - Vary mass of the associated hadrons
 - Heavy flavor!

Jing Wang (MIT), D meson production in jets, BNL jet workshop (Upton)

D⁰

Even more ...

Production mechanism of charm

- The role of gluon splitting
- Recombination in the medium

Heavy quark behavior and interactions in the medium

- Energy loss
 - Inclusive measurements:
 - heavy-flavor hadrons spectra, azimuthal anisotropy, heavy flavor tag jets
 - Details on interaction of heavy quarks about jet directions
- Diffusion

ctions K-

D0

Dataset and observables

- Jet-triggered events in pp (27.4 pb⁻¹) and PbPb (404 μ b⁻¹) collisions at $\sqrt{s_{NN}} = 5.02$ TeV collected in 2015 with the CMS detector
- MinimumBias events are used for background subtraction
- Cross-checked with D-triggered events

• Jet-triggered events in pp (27.4 pb⁻¹) and PbPb (404 μ b⁻¹) collisions at $\sqrt{s_{NN}} = 5.02$ TeV collected in 2015 with the CMS detector

• Radial distribution of D⁰ with respective to the jet axis:

$$\frac{1}{N_{JD}}\frac{dN_{JD}}{dr}$$

- The final distribution is normalized to unity in r < 0.3
- No p_T weight as light-hadron jet shape analysis

D and jets reconstruction and selections

• Jet-triggered events in pp (27.4 pb⁻¹) and PbPb (404 μ b⁻¹) collisions at $\sqrt{s_{NN}} = 5.02$ TeV collected in 2015 with the CMS detector

* $D^0 \rightarrow K\pi$

- ✤ D⁰ vertex reconstruction
 - pairing two tracks
 - kinematic fitter
- Topological selections
 - → Pointing angle (α) < ~0.04
 - → 3D decay length (d₀) normalized by its error > ~3
 - Secondary vertex prob > ~0.05
- ♦ |y^D| < 2
- Two p_T bins
 - ➡ 4 < p_T^D < 20 GeV</p>
 - → $p_T^D > 20 \text{ GeV}$

D and jets reconstruction and selections

• Jet-triggered events in pp (27.4 pb⁻¹) and PbPb (404 μ b⁻¹) collisions at $\sqrt{s_{NN}} = 5.02$ TeV collected in 2015 with the CMS detector

* $D^0 \rightarrow K\pi$

- D⁰ vertex reconstruction
 - pairing two tracks
 - kinematic fitter
- Topological selections
 - → Pointing angle (α) < ~0.04
 - 3D decay length (d₀)
 normalized by its error > ~3
 - Secondary vertex prob > ~0.05
- ✤ |y^D| < 2</p>
- Two p_T bins
 - ➡ 4 < p_T^D < 20 GeV</p>
 - → p_T^D > 20 GeV

- **Reconstruct** jets and D⁰ candidates
- Jet energy correction
- Pair selected D⁰ candidates with *every* selected jet in the same event
- Extract raw yield via fitting invariant mass in bins of r
- Correct acceptance and efficiency by simulations in bins of r
- Subtract background via event mixing technique
- Correct the resolution effect by the jet resolution from simulations

Raw D⁰ yield extraction

Mass distributions fitted by

- Double gaussian (Signal)
- 3rd order polynomial (Combinatorial)
- Single gaussian (K-π swapped)
 - Candidates with wrong mass assignment

- **Signal**: jets and D⁰ mesons from the same hard scattering
- **Background**: fake jets, jets and D⁰ mesons in underlying events, ...

• Correlate D⁰ mesons and jets in triggered events (raw) and MB events (bkg)

• Correlate D⁰ mesons and jets in triggered events (raw) and MB events (bkg)

Raw D raw D signal jet

• Correlate D⁰ mesons and jets in triggered events (raw) and MB events (bkg)

• Correlate D⁰ mesons and jets in triggered events (raw) and MB events (bkg)

Raw D

MB D

Background subtraction

- Signal = Raw Background
- Background contributions are much smaller than signal

Results

Low D p_T: $4 < p_T^D < 20 \text{ GeV/c}$

High D p_T: p_T^D > 20 GeV/c

- Low D p_T: reach maximum at 0.05 < r < 0.1
- High D p_T : fall rapidly as a function of r

Results

- predictions from PYTHIA 8
 - ➡ Low D p_T: produce a wider radial profile than measurements
 - ➡ High D p_T: agree with measurements

Results

- The ratio of PbPb over pp:
- Low D p_T : increases as a function of r
 - Hint that D⁰ are further from jet axis in PbPb than pp
- High D p_T : consistent with unity

Last slide

Summary

- First measurement of the radial profile of D⁰ mesons in jets in PbPb and pp
 - → Hint of wider D⁰ radial profile in PbPb collisions at $4 < p_T^D < 20$ GeV/c
 - Ratio of PbPb/pp is consistent with unity at pTD > 20 GeV/c
- Provides new experimental constraints on
 - heavy-flavor production
 - heavy quark energy loss and diffusion

The MIT group's work was supported by US DOE-NP

Back up

Thanks for your attention!

Raw D⁰ yield extraction

CMS-PAS-HIN-18-007

Background subtraction

- Four correlations
 - ➡ Raw jet + Raw D
 - MB jet + Raw D
 - Raw jet + MB D
 - MB jet + MB D

Analysis strategy

- $c \rightarrow D^0$: O(50%) of c cross-section
- D⁰→Kπ: 3.93 ± 0.04%
- $D^{0} c\tau = 122.9 \mu m$

Last slide

Outlook

- Higher statistics with 2018 PbPb data
- Centrality dependence of the radial profile of D⁰ mesons
- Fragmentation function of D⁰ mesons in jets

The MIT group's work was supported by US DOE-NP

Outlook

Outlook

- Higher statistics with 2018 PbPb data
- Centrality dependence of the radial profile of D^0 mesons
- Fragmentation function of D⁰ mesons in jets