

Chiral currents from Anomalies

Michael Stone

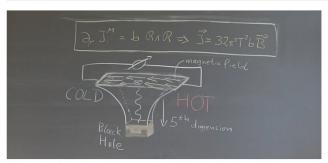
Institute for Condensed Matter Theory University of Illinois

Santa-Fe July 18 2018

SCIENCE

An Experiment in Zurich Brings Us Nearer to a Black Hole's Mysteries

By KENNETH CHANG JULY 19, 2017



A chalkboard illustration of the string theory calculation that shows how the axial gravitational anomaly produces current. Karl Landsteiner

Experimental signatures of the mixed axialgravitational anomaly in the Weyl semimetal NbP

Johannes Gooth^{1,2}, Anna C. Niemann^{1,3}, Tobias Meng⁴, Adolfo G. Grushin⁵, Karl Landsteiner⁶, Bernd Gotsmann², Fabian Menges², Marcus Schmidt², Chandra Shekhar², Vicky Süß⁷, Ruben Hühne³, Bernd Rellinghaus³, Claudia Felser⁷, Binghai Yan^{1,6} & Kornelius Nielsch^{1,3}

Experiment aims to verify:

$$\nabla_{\mu}T^{\mu\nu} = F^{\mu\nu}J_{\mu} - \frac{k}{384\pi^{2}} \frac{\epsilon^{\rho\sigma\alpha\beta}}{\sqrt{-g}} \nabla_{\mu}[F_{\rho\sigma}R^{\nu\mu}{}_{\alpha\beta}],$$

$$\nabla_{\mu}J^{\mu} = -\frac{k}{32\pi^{2}} \frac{\epsilon^{\mu\nu\rho\sigma}}{\sqrt{-g}} F_{\mu\nu}F_{\rho\sigma} - \frac{k}{768\pi^{2}} \frac{\epsilon^{\mu\nu\rho\sigma}}{\sqrt{-g}} R^{\alpha}{}_{\beta\mu\nu}R^{\beta}{}_{\alpha\rho\sigma},$$

Here k is number of Weyl fermions, or the Berry flux for a single Weyl node.

What the experiment measures

Contribution to energy current for 3d Weyl fermion with $\hat{H} = \boldsymbol{\sigma} \cdot \mathbf{k}$

$$\mathbf{J}_{\epsilon} = \mathbf{B} \left[\frac{\mu^2}{8\pi^2} + \frac{1}{24} T^2 \right]$$

Simple explanation:

- The ${\bf B}$ field makes $B/2\pi$ one-dimensional chiral fermions per unit area.
- These have $\epsilon = +k$
- Energy current/density from each one-dimensional chiral fermion:

$$J_{\epsilon} = \int_{-\infty}^{\infty} \frac{d\epsilon}{2\pi} \epsilon \left\{ \frac{1}{1 + e^{\beta(\epsilon - \mu)}} - \theta(-\epsilon) \right\} = 2\pi \left(\frac{\mu^2}{8\pi^2} + \frac{1}{24} T^2 \right)$$

Could even have been worked out by Sommerfeld in 1928!

Are we really exploring anomaly physics?

Yes!

Energy-Momentum Anomaly

$$\nabla_{\mu}T^{\mu\nu} = F^{\mu\nu}J_{\mu} - \frac{k}{384\pi^2} \frac{\epsilon^{\rho\sigma\alpha\beta}}{\sqrt{-g}} \nabla_{\mu} [F_{\rho\sigma}R^{\nu\mu}{}_{\alpha\beta}],$$

Origin of Gravitational Anomaly in 2 dimensions

Set z = x + iy and use conformal coordinates

$$ds^2 = \exp\{\phi(z,\bar{z})\}d\bar{z} \otimes dz$$

- Example: non-chiral scalar field $\hat{\varphi}$ has central charge c=1 and energy-momentum operator is $\hat{T}(z)=:\partial_z\hat{\varphi}\partial_z\hat{\varphi}:$
- Actual energy-momentum tensor is

$$T_{zz} = \hat{T}(z) + \frac{c}{24\pi} \left(\partial_{zz}^2 \phi - \frac{1}{2} (\partial_z \phi)^2 \right)$$

$$T_{\bar{z}\bar{z}} = \hat{T}(\bar{z}) + \frac{c}{24\pi} \left(\partial_{\bar{z}\bar{z}}^2 \phi - \frac{1}{2} (\partial_{\bar{z}} \phi)^2 \right)$$

$$T_{\bar{z}z} = -\frac{c}{24\pi} \partial_{\bar{z}z}^2 \phi$$

Now $\Gamma^z_{zz}=\partial_z\phi$, $\Gamma^{\bar z}_{\bar z\bar z}=\partial_{\bar z}\phi$, all others zero. So find

$$\nabla^z T_{zz} + \nabla^{\bar{z}} T_{\bar{z}z} = 0$$

Chiral field

Energy-momentum tensor for chiral field

$$T_{\bar{z}\bar{z}} = 0$$

$$T_{zz} = \hat{T}(z) + \frac{c}{24\pi} \left(\partial_{zz}^2 \phi - \frac{1}{2} (\partial_z \phi)^2 \right)$$

$$T_{\bar{z}z} = -\frac{c}{48\pi} \partial_{\bar{z}z}^2 \phi$$

lacksquare In these coordinates Ricci scalar $R=R^{ij}{}_{ij}$ is given by.

$$R = -4e^{-\phi}\partial_{\bar{z}z}^2\phi$$

Now we find

$$\left| \nabla^z T_{zz} + \nabla^{\bar{z}} T_{\bar{z}z} = -\frac{c}{96\pi} \partial_z R \right|$$

1+1 d Gravitational Energy-Momentum Anomaly

Gravitational Anomaly in 1+1 dimensions

■ 1+1 Chiral Fermion Anomaly in Minkowski signature coordinates:

$$\nabla_{\mu} T^{\mu\nu} = -\frac{1}{96\pi} \frac{\epsilon^{\nu\sigma}}{\sqrt{-g}} \partial_{\sigma} R$$

 \blacksquare Apply to r, t Schwarzschild metric

$$ds^{2} = -f(r)dt^{2} + \frac{1}{f(r)}dr^{2}$$

where $f(r) \to 1$ at large r, and vanishes linearly as $r \to r_{H+}$.

- Ricci Scalar R = -f''.
- lacktriangle Timelike Killing vector $\eta^{
 u}$ gives genuine (non)- conservation

$$\nabla_{\mu}(T^{\mu\nu}\eta_{\nu}) \equiv \frac{1}{\sqrt{-g}} \frac{\partial}{\partial r} \sqrt{-g} T^{r}{}_{t} = \frac{1}{96\pi} \frac{\epsilon^{\nu\sigma}\eta_{\nu}}{\sqrt{-g}} \partial_{\sigma} R,$$

Hawking radiation in 1+1 dimensions

(Robinson, Wilczek 2005; Banerjee 2008;...)

Have

$$\frac{\partial}{\partial r}(\sqrt{-g}T^r{}_t) = \frac{1}{96\pi}f\partial_r f'' = \frac{1}{96\pi}\frac{\partial}{\partial r}\left(ff'' - \frac{1}{2}(f')^2\right),$$

Integrate

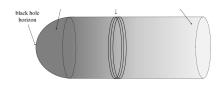
$$\sqrt{-g}T^r{}_t\Big|_{r_H}^{\infty} = \frac{1}{96\pi} \left(ff'' - \frac{1}{2} (f')^2 \right) \Big|_{r_H}^{\infty}.$$

- Nothing is coming out of the black hole: the LHS is zero at r_H .
- The RHS is zero at infinity, and equal to $(1/96\pi)(f')^2/2$ at the horizon.
- Thus

$$T^r_t(r \to \infty) \equiv J_\epsilon = \frac{1}{48\pi} \kappa^2 = \frac{1}{12} \pi T_{\text{Hawking}}^2, \quad \checkmark$$

where $\kappa = f'(r_H)/2$ is the surface gravity and $T_{\text{Hawking}} = \kappa/2\pi$.

Hawking radiation



- Euclidean Schwarzschild manifold is skin of a salami sausage with circumference $\beta=2\pi/\kappa=1/T_{\rm Hawking}$. (Gibbons, Perry 1976)
- Recall that Sommerfeld gives

$$\begin{split} J_{\epsilon} &= \int_{-\infty}^{\infty} \frac{d\epsilon}{2\pi} \epsilon \left\{ \frac{1}{1 + e^{\beta(\epsilon - \mu)}} - \theta(-\epsilon) \right\} = 2\pi \left(\frac{\mu^2}{8\pi^2} + \frac{1}{24} T^2 \right) \\ &\to \frac{1}{12} \pi T^2, \quad \text{when } \mu = 0. \end{split}$$

■ Energy-momentum anomaly \Rightarrow Sommerfeld.

Aside: Hawking radiation in the Laboratory?

M. Stone, Class. Quant. Gravity 30 085003 (2013)



- Hall bar with electrodes to anti-confine.
- Inflowing current divides at "event horizon"
- Solve lowest Landau-level quantum scattering problem (parabolic-cylinder functions)
- Find that chiral fermion edge is in Hawking-temperature thermal state

14

Gravitational Axial Anomaly

$$\nabla_{\mu}J^{\mu} = -\frac{k}{32\pi^{2}} \frac{\epsilon^{\mu\nu\rho\sigma}}{\sqrt{-g}} F_{\mu\nu} F_{\rho\sigma} - \frac{k}{768\pi^{2}} \frac{\epsilon^{\mu\nu\rho\sigma}}{\sqrt{-g}} R^{\alpha}{}_{\beta\mu\nu} R^{\beta}{}_{\alpha\rho\sigma}$$

Chiral Vortical Effect

In a (Born) frame rotating with angular velocity Ω , have on-axis current (Vilenkin 1979, Landsteiner, Megias, Peña-Benitez 2011):

$$\begin{split} J_z(r=0) &= \frac{1}{4\pi^2} \int_{-\infty}^{\infty} \epsilon^2 \, d\epsilon \left(\frac{1}{1 + e^{\beta(\epsilon - (\mu + \Omega/2))}} - \frac{1}{1 + e^{\beta(\epsilon - (\mu - \Omega/2))}} \right) \\ &= \frac{\mu^2 \Omega}{4\pi^2} + \frac{\Omega^3}{48\pi^2} + \frac{1}{12} \Omega T^2. \\ &= \Omega \left(\frac{\mu^2}{4\pi^2} + \frac{1}{12} T^2 \right) + O(\Omega^3). \end{split}$$

- CME with $B \to 2\Omega$ Coriolis force? (Stephanov, Son *et al.*) but no $4 \to 2$ dimensional reduction, and no $T^2/12$ this way
- Pontryagin (R^2) term in axial anomaly? (Landsteiner *et al.*) Yes!

Axial-anomaly origin of CVE

Obtain CVE from the mixed axial anomaly by using the 4-d metric

$$ds^{2} = -f(z)\frac{\left(dt - \Omega r^{2}d\phi\right)^{2}}{\left(1 - \Omega^{2}r^{2}\right)} + \frac{1}{f(z)}dz^{2} + dr^{2} + \frac{r^{2}\left(d\phi - \Omega dt\right)^{2}}{\left(1 - \Omega^{2}r^{2}\right)}.$$

- Looks complicated, but $ds^2 \to -dt^2 + dz^2 + dr^2 + r^2 d\phi^2$ as $f(z) \to 1$.
- lacksquare Horizon at $f(z_H)=0$ rotates with angular velocity Ω
- Again $T_{\text{Hawking}} = f'(z_H)/4\pi$
- Pontryagin density:

$$\frac{1}{4} \epsilon^{\mu\nu\rho\sigma} R^a{}_{b\mu\nu} R^b{}_{a\rho\sigma} = \Omega \frac{\partial}{\partial z} (r[f'(z)]^2) + O[\Omega^3]$$

Axial-anomaly origin of CVE

Assume no current at horizon, and integrate up

$$\nabla_{\mu}J^{\mu} = -\frac{k}{768\pi^2} \frac{\epsilon^{\mu\nu\rho\sigma}}{\sqrt{-g}} R^{\alpha}{}_{\beta\mu\nu} R^{\beta}{}_{\alpha\rho\sigma},$$

from horizon to infinity.

- Again, by a seeeming miracle, result depends only on value of $f'(z_H) = 4\pi T_{\rm Hawking}$.
- Find contribution to current is

$$J_z = \frac{\Omega}{12}T^2 + O(\Omega^3).$$

⇒ CVE consequence of gravitational axial anomaly

General anomaly-related currents

$$T^{\mu\nu} = (\epsilon + p)u^{\mu}u^{\nu} - pg^{\mu\nu} + \xi_{TB}(B^{\mu}u^{\nu} + B^{\nu}u^{\mu}) + \xi_{T\omega}(\omega^{\mu}u^{\nu} + \omega^{\nu}u^{\mu})$$

$$J^{\mu}_{n} = nu^{\mu} + \xi_{JB}B^{\mu} + \xi_{J\omega}\omega^{\mu} \quad \text{number current}$$

$$J^{\mu}_{S} = su^{\mu} + \xi_{SB}B^{\mu} + \xi_{S\omega}\omega^{\mu} \quad \text{entropy current}$$

No-entropy-production imposes relationships (Stephanov, Yee 2015)

$$\xi_{JB} = C\mu, \quad \xi_{J\omega} = C\mu^2 + X_B T^2
\xi_{SB} = X_B T, \quad \xi_{S\omega} = 2\mu T X_B + X_\omega T^2
\xi_{TB} = \frac{1}{2} (C\mu^2 + X_B T^2),
\xi_{T\omega} = \frac{2}{3} (C\mu^3 + 3X_B\mu T^2 + X_\omega T^3)$$

For the ideal Weyl gas

$$C = \frac{1}{4\pi^2}, \quad X_B = \frac{1}{12}, \quad X_\omega = 0.$$

We have confirmed that X_B is gravitational anomaly

19

Curved space Dirac/Weyl equation

Massless Dirac equation in curved space:

$$\mathcal{D}\Psi \equiv \gamma^a e_a^{\mu} \left(\partial_{\mu} + \frac{1}{2} \sigma^{bc} \, \omega_{bc\mu} \right) \Psi = 0$$

- ${f e}_a=e^\mu_a\partial_\mu$ is a Minkowski-orthonormal vierbein
- lacksquare $\omega_{ab\mu}dx^{\mu}$ is spin connection 1-form

Decompose

$$\mathcal{D} = \begin{bmatrix} 0 & \mathcal{D}_+ \\ \mathcal{D}_- & 0 \end{bmatrix}$$

Gravitational Anomaly from Dirac

- lacksquare Work in frame rotating with horizon to order Ω
- Find

$$0 = \left[-\frac{1}{\sqrt{f[z]}} \frac{\partial}{\partial t} + \sqrt{f[z]} \sigma_3 \left(\frac{\partial}{\partial z} + \frac{f'}{4f} - \frac{i\Omega}{2} \right) + \sigma_1 \left(\frac{\partial}{\partial r} + \frac{1}{2r} \right) + \sigma_2 \left(\frac{1}{r} \frac{\partial}{\partial \phi} + r\Omega \frac{\partial}{\partial t} \right) \right] \Psi$$

Absorb the 1/2r and f'/4f by setting

$$\Psi = \frac{1}{r^{1/2} f^{1/4}} \tilde{\Psi}$$

■ Introduce tortoise coordinate z_* by $dz_* = dz/f(z)$.

Gravitational Anomaly from Dirac

Find

$$0 = \left[\frac{\partial}{\partial t} + \sigma_3 \left(\frac{\partial}{\partial z_*} - \frac{i}{2} f(z) \Omega \right) + \sqrt{f(z)} \left\{ \sigma_1 \frac{\partial}{\partial r} + \sigma_2 \left(\frac{1}{r} \frac{\partial}{\partial \phi} + r \Omega \frac{\partial}{\partial t} \right) \right\} \right] \Psi$$

- lacksquare Could absorb a z_* dependent phase into $ilde{\Psi}$ to remove the $if(z)\Omega/2$.
- Bad idea! this is an axial transformation.
- Origin of spectral flow and anomaly

My Conclusions:

Experiment does not directly involve gravity yet it highlights the intimate and fascinating connection between temperature and gravity

...first seen by

