SECOND TOPICAL WORKSHOP ON CRYOMODULE MICROPHONICS AND RESONANCE CONTROL – LLRF MRCW'18

CONTINUOUS WAVE CRYOMODULE DESIGN: CRYO-MECHANICAL PERSPECTIVE

Z.A. CONWAY Physics Division Argonne National Laboratory

25 October 2018 Argonne, Illinois 60439

ACKNOWLEDGEMENTS

People who deserve more credit than they receive.

- Michael Kelly, Albert Barcikowski, Glenn Cherry, Richard Fischer, Mark Kedzie, Jacob Kilbane, Tom Reid, and Gary Zinkann (ANL-PHY);
- Andrei Lunin and Joe Ozelis (FNAL);
- J. Fuerst (ANL-APS); and
- S.-h. Kim (MSU-FRIB).

ANL 72.75 MHz, β = 0.077, Quarter-Wave Cryomodule

OVERVIEW Covered Content

- Motivation.
- Microphonic sources:
 - Mechanical vibration and couplings,
 - Cryogenics.
- Resonator design.
- Cryomodule design considerations:
 - Cryogenic distribution,
 - Mechanical coupling strength,
 - Vibration damping, and
 - Cavity isolation.

Cryomodule Turbo Pump Shaking Away

SOURCES OF MICROPHONIC NOISE

Cryomodule Considerations

- Any physical interaction between the resonant cavity mechanical and RF structures which couples mechanical vibrations into undesirable RF noise.
- Resonator mechanical structure:
 - Helium bath boiling, tuner vibration, appurtenance loading, etc.
- Cryomodule design and mechanical couplings:
 - Thermal acoustic oscillations:
 - J. Holzbauer's upcoming presentation,
 - Coolant flow rates: turbulent flow, water hammer, slug flow, subatmospheric cryogenic system, etc.
 - Ground motion.
 - Accelerator vibrations: vacuum pumps, fans, RF sources, magnet supplies, etc.
- M. Kelly tomorrow for ANL tuning methods.

DESIGN AND MICROPHONIC SOURCES

Coupling mechanical vibrations and RF eigenmodes

- Cavity RF frequency variations are due to coupling between the RF field and mechanical vibrations (changing boundary conditions and/or sources).
- Cavity RF frequency variations due to oscillations in a mechanical eigenmode α driven by a generalized force, F_{α} , obey:

$$\frac{d^{2}\Delta\omega_{\alpha}}{dt^{2}} + \frac{2\Omega_{\alpha}}{Q_{\alpha}}\frac{d\Delta\omega_{\alpha}}{dt} + \Omega_{\alpha}^{2}\Delta\omega_{\alpha} = -\frac{\omega\Omega_{\alpha}^{2}F_{\alpha}^{2}}{c_{\alpha}U}$$
$$\Delta\omega = \sum_{\alpha}\Delta\omega_{\alpha}$$

- The cavity frequency variations are only driven by mechanical modes which couple to the RF fields.
- Design cavity mechanical structure to address dominant mechanical sources.

MECHANICAL VIBRATIONS Types

- Deterministic or non-deterministic:
 - Resonant or non-resonant excitation of mechanical modes.
 - Wave types:
 - Shock wave/pulse, harmonic, random.
- Modes of Oscillation (all of which can be coupled):
 - Transverse,
 - Longitudinal,
 - Rocking, and
 - Torsion.
- Damping: good luck if you are using metals
- Next = example.

CRYOMODULE OVERVIEW

Top Loading Cryomodule Not The Only Option – K. Jensch Next

NON-OPTIMIZED EXAMPLE Helium Bath Boiling

- 345 MHz, β = 0.40 double spoke resonator:
 - $-\Delta f/\Delta P = + 49 \text{ Hz/mbar}$
- The double spoke cavity microphonic noise driven by low frequency helium bath boiling

OPTIMIZED EXAMPLE Helium Bath Boiling

- A triple spoke resonator was built after the double spoke.
- Designed to de-couple the cavity **RF from low-frequency helium** pressure fluctuations.
 - TSR $\Delta f / \Delta P$ = -1.9 Hz/mbar

Z. Conway

– Cannot do this for everything!

= 20 W

Frequency Deviation (Hz)

MICROPHONIC CENTERING

Balance Cell-to-Cell Reactance

72 MHz QWR

 (\bullet)

7

- J.R. Delayen, NIMA A259 (1987) 341-357.
- Practically accomplished by electromagnetic centering of the inner conductor.
 - Maximize the cavity frequency No position measurements required.
 - Frequency perturbations are 2nd order with respect to inner conductor position – Eliminates microphonics due to pendulum-like motion.

HWR POWER REQUIREMENTS

Half-Wave Resonator Electro-Mechanical Interactions

CRYOMODULE DESIGN CONSIDERATIONS

Mechanically coupled to the RF system

 Cryomodules are either the source or the coupling between mechanical vibrations and resonators.

FRIB β = 0.085 Quarter-Wave Resonator Cryomodule S.-h. Kim's presentation tomorrow for a good example.

Z. Conway LLRF - MRCW18

THERMO-ACOUSTIC OSCILLATIONS Good luck

- When a gas channel is subject to large temperature gradients it may spontaneously oscillate in an undamped manner with large thermal and pressure variations.
- Mitigation:
 - Reduce the driving force:
 - Change temperature gradient thermal intercepting.
 - Change the length to diameter ratio.
 - Increase viscous damping: reduce channel area.
 - Increase inertial damping: increase channel area, increase chamber volumes, and change the thermal gradient.
 - Block gas flow in the channel: check valves, filters.
 - Change channel coupling: ballast volume, change flow rate through the channel.

J. Fuerst, Low Temp. Eng. & Cryo. Conf., Southampton, UK 17-19 July 1990. Christie & Hartwig, Thermal & fluids Analysis workshop 2014. Gupta & Rabehl, Applied Thermal Engineering, Vol. 84, 104-109 2015.

THERMO-ACOUSTIC OSCILLATION STABILITY When and where to TAO's occur.

 Stability mathematically calculated by N. Rott for discontinuous temperature jump.

$$\alpha = \frac{T_{Hot}}{T_{Cold}} \qquad Y_c = r_0 \left(\frac{\omega}{\nu_c}\right)^{1/2}$$

- Stable for small values of either a or Yc.
- Measured for cryogenic applications by Fuerst (1990) and then many more.
- Reduce risk by:
 - Damping,
 - Thermal profile modifying, and
 - Elimination of the line containing the thermo-acoustic oscillation.

N. Rott, J. of Appl. Math. & Phys., Vol. 24, 54-72 1973.

CRYOMODULE MECHANICAL DESIGN

Modify coupling strengths to suit your needs

LINKAGE DESIGN

Acoustic Wave Transmission

- Vibrations are mechanical waves and obey the wave equation.
- Take care: a wave going from a high impedance to a low impedance region increases in amplitude.

$$R_{0} = \frac{Z_{2} - Z_{1}}{Z_{2} + Z_{1}}$$
$$T_{0} = \frac{2Z_{1}}{Z_{2} + Z_{1}}$$
$$Z = \frac{Force}{Velocity} = \rho v (solid)$$

$$T_0(SST \ to \ Ti) = 1.26$$

	Material	ρ (kg/m³)	v (m/s)	Z (MPa*s/m)
304	4 Stainless Steel	8,000	5,800	46
	Steel	8,050	4,900	39
	Titanium	4,500	6,100	27
	Aluminum	2,700	6,320	17
	Copper	8,930	4,600	41
	Niobium	8,600	3,500	30
way LLRF - MRCW18		18	www.matweb.com	

Acoustic Impedance For Different Materials

CLOSING REMARKS Thank you for your attention

- Microphonic sources are everywhere.
- Design your resonators and cryomodules to decouple microphonics from RF as much as practicable.
- Good luck.

