

Potential Application of Advance Control Algorithm for Fast Tuner Control

Shen Zhao Low Level Radio Frequency Team Leader

This material is based upon work supported by the U.S. Department of Energy Office of Science under Cooperative Agreement DE-SC0000661, the State of Michigan and Michigan State University. Michigan State University designs and establishes FRIB as a DOE Office of Science National User Facility in support of the mission of the Office of Nuclear Physics.

Outline

- Tuner Types
- Control Strategy
 - PID
 - Observer based control
- Simulation Study
 - Model
 - Results
 - Parameter tuning
- Summary

Slow Tuner vs. Fast Tuner

	Slow Tuner	Fast Tuner	
Frequency Range	< 1 Hz	> 10 Hz	
Tuner Types	Stepper Pneumatic Temperature	Piezo Variable reactance	
Detuning Sources	Bath pressure variation	Microphonics Lorenz force detuning	

Piezo Tuner

Pros: » Fast response

- » Fine resolution
- Cons
 » Hysteresis
 » Creep
 - »Nonlinear gain

Michigan State University

Control of Choice

Category	Analysis Method	Method	Model Dependency	
Classical Control Theory	Frequency Domain (TF)	PID Lead-lag compensator Loop-shaping	No System TF System TF	
Modern Control Theory	Time Domain (SS)	State observer Disturbance observer	Yes Yes / No	
Other		Robust control Adaptive control Fuzzy logic Neural network	Yes Yes No No	Advanced control?

PID Controller

Pros

- Simple structure
- System can be treated as black box
- Only three parameters to tune
- Transfer function analysis

Cons

• One degree of freedom

» Tracking» Disturbance rejection

y(s) / r(s) => 1 y(s) / d(s) => 0

Ignoring knowledge of system

Performance

Observer based Control

FRI

- Luenberger observer
 » Estimate system states
- Unknown input observer
 » Estimate external disturbance
- Extended state observer
 » Estimate external disturbance and unknown dynamics
- Equivalent Transfer Function Representation
 - Two degree of freedom
 - Observer performance determines disturbance rejection performance
 - Controller performance determines tracking performance

Simulation Model

Notes

- Hysteresis is treated as disturbance and its effect is estimated by the ESO (z₂) and then cancelled in the controller
- The ESO does not include any model information of the hysteresis; the estimation performance is mainly determined by the observer bandwidth, which is limited by sampling rate and noise level.

Simulation Results

 The nonlinear effect of the hysteresis will distort the perfect sinusoidal input and create higher order harmonic components in the system output.

 With feedback control, the third harmonic in the system output signal is greatly suppressed.

Parameter Tuning

Parameters	Case #1	Case #2	Case #3	Case #4
Sine Wave Frequency (Hz)	30	60	60	60
Controller Bandwidth (rad/s)	2000	2000	2000	4000
Observer Bandwidth (rad/s)	10000	10000	20000	10000
Tracking Error (%)	10	20	19	10

Facility for Rare Isotope Beams U.S. Department of Energy Office of Science

U.S. Department of Energy Office of Michigan State University

Summary

- Traditional PID controller is still dominant, but performance may be limited for challenging problems
- The disturbance observer based control design may be an effective solution to deal with the hysteresis effect in the piezo fast tuner
- Looking for collaborations if interested

