

Cryomodule-on-Chip (CMOC) Simulation Engine

L. Doolittle & C. Serrano, LBNL

Outline/Summary

- Math and physics of Mechanical and Electromagnetic modes, with nonlinear coupling
- Eventually lands in state-space formalism
- Can numerically integrate equations in software or FPGA
- FPGA is nice because it can run in same chip as controller(s)
- Match parameters to experimental evidence

Electromagnetic world

Mechanical world

EM fields store energy power flows in and out

deflections store energy power flows in and out

Physics converted to math

Decompose dynamics into eigenmodes that store energy use $\sqrt{\rm Joule}$ as universal amplitude coordinate (thanks, Olof!*)

Electromagnetic

Mechanical

 $\frac{d\vec{x}}{dt} = \mathbf{A}\vec{x} + \mathbf{B}\vec{k} + \mathbf{C}i_B \qquad \qquad \frac{d\vec{y}}{dt} = \mathbf{D}\vec{y} + \mathbf{E}\vec{w} + \mathbf{F}|\vec{x}|^2$ $\mathbf{A} = \mathbf{A}_0 + \mathbf{G}\vec{y}$

Linear Time Invariant (LTI) until red nonlinear coupling terms are added. \vec{k} are RF drives

 i_B is the beam

 \vec{w} are actuators and environmental forces

- Using eigenmode coordinates makes A and D diagonal
- **F** and **G** are both based on the same $B^2 E^2$ surface integral

^{*}Olof Troeng, Modeling of accelerating cavity modes, in preparation.

Translate to hardware

Abstract state space equation, unifying \vec{x} and \vec{y} as \vec{S}

$$\frac{dS}{dt} = f(\vec{S}, \vec{k}) \quad \text{or} \quad z\vec{S} = \vec{S} + f(\vec{S}, \vec{k}) \cdot dt$$

FPGA clock tick ${\sim}5\,\text{ns}$

 \sim 10 ns per electromagnetic time step (parallel DSP)

 \sim 250 ns per mechanical time step (serial DSP)

- Fixed point arithmetic, unlike floating point typical for software
- 22% of XC7K160T, configured for 2 cavities, 3 electrical modes each

Measurements

Measurements

Simple RF pulse response provides some info about Lorentz detuning

Simulation

Using same resonances as meausred with transfer function, fitting coupling coefficients, driven by $|V|^2$ Would be far preferable to frequency-sweep $|V|^2$

Outline/Summary

- Math and physics of Mechanical and Electromagnetic modes, with nonlinear coupling
- Eventually lands in state-space formalism
- Can numerically integrate equations in software or FPGA
- FPGA is nice because it can run in same chip as controller(s)
- Match parameters to experimental evidence

Conclusion

- Physics of the electro-mechanical system is easily understood (if the dynamical part stays linear).
- Numerical treatment is also not hard.
- Acquiring and interpreting data to fit the model involves more work.
- Having a complete controller/model running in real time opens up many possibilities for software development and operator training.
- Specifically has proved useful during development of the automated cavity bring-up process for LCLS-II .

https://github.com/BerkeleyLab/CMOC https://github.com/BerkeleyLab/Global-Feedback-Simulator LLRF'15 Shanghai poster: Accelerator-On-Chip Simulation Engine ICALEPCS'17 talk/paper: Cryomodule-on-Chip Simulation Engine

Thank You!