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TRIUMF’s e-linac driving configuration

EINJ EACA
N C;j_@%g T - TRIUMF's e-Linac
. acceleration cryomudule,
4 4 yﬁ_@ consists of 2 9 cell cavities
= = and Is operated with a single

klystron in CW mode and
vector sum control.

Klystronl
300kW



Operational experience

« Amplitude oscillation in both cavities (operational gradient dependent)

Time to grow
oscillations
~ 6 — 10 seconds




Parametric oscillations

 “A parametric oscillator is a driven harmonic oscillator
In which the oscillations are driven by varying some
parameter of the system frequency, typically different
from the natural frequency of the oscillator”, Wikipedia
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« Examples:
* Kid on a swing
 Roll instabllities of ships







Lorentz oscillation problem formulation

* Lorentz force is driving a cavity as spring mass system
emX+cx+kx=F

— 2 K, = lorentz constant 09
* F = _KL Vacc Y = coupling factor oo
— V, = generator voltage 207

[ — g ]
ace )/Vg COS((p) @ = detuning angle 5
° (,0 — tan_l (TA(U) T = Cavity time c'm.qs.tant %05
b = cavity sensitivity Se

E 0.

e Aw = bx :

0
delta omega

« Equation of motion:

mx + cx + kx Lorentz force at ‘a’

= —K;y*V/{cos?(tan™ " (tb(a + x)) —@tm’l_l(ﬂ?@b

Nonlinear system



Nonlinear system stability analysis

« System Is said to be stable in the sense of Lyapunov if
e V(x)>0, V(x) Lyapunov function candidate

« V(x) <0

* With x; = x,x, = x

Kk 1
* V =-xi+-mxs

e V = A(x)x; — cx?

-

mx + cx + kx = A(x)
A(x) = Lorentz force

Stability depends on the input power and
the cavity spring constant




Parametric oscillations in cavity with lorentz force

General differential
equation for parametric
oscillation

Lorentz force oscillation differential
equation

e mxX +cx + kx =

K V2y?cos?(tan™(zb(a + x)))cos?(tan'(zha)) (2a + x)x * ¥+ BM)x +w*(t)x=0

N

* mX + cx +
(k — K V2y?cos?(tan™t(th(a + x))) cos?(tan™1(zha))(2a + x))x = 0

« Assume solution: x = u cos(wt) and substitute in nonlinear part to
get an approximate solution

(k — K V2y%cos*(tan (b (a ) Time dependent
+ pcos(wt)))) cos?(tan~1(tha))(2a + pcos(wt))) resonance frequency
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Simulation results

Phase portrait, x versus x

Field amplitude = 1,

Field amplitude =

No field

Stabillity is field dependent

Existence of limit cycles —— |

A(x)x, < cx3

Lorentz force oscillation

Field
amplitude
slightly
increased
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Conclusion and lookout

* Theory of Lorentz force has been analyzed
 Stablility conditions for stable operation are established

» Simulated system results are in agreement with
system experience

* Increasing oscillation amplitude can only be observed at high
gradients

e Stable for Aw < 0, unstable for Aw > 0

* Next steps: Analyze double cavity system In vector
sum control
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Thank you for your consideration!



