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Overview 

• TRIUMF’s e-Linac cavity driving configuration 

• First operational experiences 

• Parametric oscillations 

• Lorentz oscillation problem formulation 

• Nonlinear system stability analysis 

• Parametric oscillation in cavity with lorentz force 

• Simulations 

• Conclusion  
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TRIUMF’s e-linac driving configuration 

• TRIUMF’s e-Linac 

acceleration cryomudule, 

consists of 2 9 cell cavities 

and is operated with a single 

klystron in CW mode and 

vector sum control. 
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Operational experience 

• Amplitude oscillation in both cavities (operational gradient dependent) 
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Time to grow 

oscillations 

≈ 6 − 10 𝑠𝑒𝑐𝑜𝑛𝑑𝑠 
Cavity 1 

Cavity 2 



• “A parametric oscillator is a driven harmonic oscillator 

in which the oscillations are driven by varying some 

parameter of the system frequency, typically different 

from the natural frequency of the oscillator”, Wikipedia 

 

 
• Examples:  

• Kid on a swing 

• Roll instabilities of ships 

Parametric oscillations 
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Lorentz oscillation problem formulation 
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• Lorentz force is driving a cavity as spring mass system 

• 𝑚𝑥 + 𝑐𝑥 + 𝑘𝑥 = 𝐹 

• 𝐹 = −𝐾𝐿𝑉𝑎𝑐𝑐
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• 𝑉𝑎𝑐𝑐 = 𝛾𝑉𝑔 cos 𝜑  

• 𝜑 = 𝑡𝑎𝑛−1(𝜏∆𝜔) 

• ∆𝜔 = 𝑏𝑥 

 

• Equation of motion: 

 

𝑚𝑥 + 𝑐𝑥 + 𝑘𝑥
= −𝐾𝐿𝛾

2𝑉𝑔
2{cos2(𝑡𝑎𝑛−1(𝜏𝑏(𝑎 + 𝑥)) − 𝑐𝑜𝑠2 𝑡𝑎𝑛−1 𝜏𝑏𝑎 } 

𝐾𝐿 = 𝑙𝑜𝑟𝑒𝑛𝑡𝑧 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡 
𝛾 = 𝑐𝑜𝑢𝑝𝑙𝑖𝑛𝑔 𝑓𝑎𝑐𝑡𝑜𝑟 

𝑉𝑔 = 𝑔𝑒𝑛𝑒𝑟𝑎𝑡𝑜𝑟 𝑣𝑜𝑙𝑡𝑎𝑔𝑒 

𝜑 = 𝑑𝑒𝑡𝑢𝑛𝑖𝑛𝑔 𝑎𝑛𝑔𝑙𝑒 

𝜏 = 𝑐𝑎𝑣𝑖𝑡𝑦 𝑡𝑖𝑚𝑒 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡 
𝑏 = 𝑐𝑎𝑣𝑖𝑡𝑦 𝑠𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 

Nonlinear system 

Lorentz force at ‘a’ 



Nonlinear system stability analysis 

• System is said to be stable in the sense of Lyapunov if 
• 𝑉 𝑥 > 0 ,             𝑉 𝑥  Lyapunov function candidate 

• 𝑉 𝑥 < 0 

 

• With 𝑥1 = 𝑥, 𝑥2 = 𝑥   

 

• 𝑉 =
𝑘

2
𝑥1
2 +

1

2
𝑚𝑥2

2 

• 𝑉 = Λ 𝑥1 𝑥1 − 𝑐𝑥2
2 

 

 

𝑚𝑥 + 𝑐𝑥 + 𝑘𝑥 = Λ 𝑥  

Λ 𝑥 = 𝐿𝑜𝑟𝑒𝑛𝑡𝑧 𝑓𝑜𝑟𝑐𝑒 

Only stable if         Λ 𝑥1 𝑥1 < 𝑐𝑥2
2 

 
Stability depends on the input power and 

the cavity spring constant  



Parametric oscillations in cavity with lorentz force 

General differential 
equation for parametric 
oscillation 

Lorentz force oscillation differential 
equation 

• 𝑥 + 𝛽 𝑡 𝑥 + 𝜔2 𝑡 𝑥 = 0 
• 𝑚𝑥 + 𝑐𝑥 + 𝑘𝑥 =

𝐾𝐿𝑉𝑔
2𝛾2𝑐𝑜𝑠2 𝑡𝑎𝑛−1 𝜏𝑏 𝑎 + 𝑥 𝑐𝑜𝑠2 𝑡𝑎𝑛−1 𝜏𝑏𝑎 2𝑎 + 𝑥 𝑥 

 

• 𝑚𝑥 + 𝑐𝑥 + 
(𝑘 − 𝐾𝐿𝑉𝑔

2𝛾2𝑐𝑜𝑠2 𝑡𝑎𝑛−1 𝜏𝑏 𝑎 + 𝑥 cos2(tan−1 𝜏𝑏𝑎 )(2𝑎 + 𝑥))𝑥 = 0 

 

• Assume solution:  𝑥 = 𝜇 cos 𝜔𝑡  and substitute in nonlinear part to 

get an approximate solution 

 
(𝑘 − 𝐾𝐿𝑉𝑔

2𝛾2𝑐𝑜𝑠2 𝑡𝑎𝑛−1 𝜏𝑏(𝑎

+ 𝜇cos (𝜔𝑡))  cos2(tan−1 𝜏𝑏𝑎 )(2𝑎 + 𝜇cos (𝜔𝑡))) 
9 

Time dependent 

resonance frequency 



Simulation results 
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Phase portrait, 𝑥  𝑣𝑒𝑟𝑠𝑢𝑠 𝑥 

• Field amplitude  =  𝑉𝑔 

• Field amplitude  =   
𝑉𝑔

2
 

• No field 

 

• 𝑎 > 0 

• 𝑎 < 0 

Stability is field dependent    

Λ 𝑥1 𝑥2 < 𝑐𝑥2
2 

 

Existence of limit cycles 

• Field 

amplitude 

slightly 

increased 



Conclusion and lookout 

• Theory of Lorentz force has been analyzed 
• Stability conditions for stable operation are established 

• Simulated system results are in agreement with 

system experience 

• Increasing oscillation amplitude can only be observed at high 

gradients 

• Stable for ∆𝜔 < 0, unstable for ∆𝜔 > 0 

 

• Next steps: Analyze double cavity system in vector 

sum control 
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Thank you for your consideration! 

 

 
 

 

 


