

Lorentz force oscillations

Ramona Leewe,

Ken Fong,

TRIUMF

LLRF Microphonics

workshop 2018

Overview

- TRIUMF's e-Linac cavity driving configuration
- First operational experiences
- Parametric oscillations
- Lorentz oscillation problem formulation
- Nonlinear system stability analysis
- Parametric oscillation in cavity with lorentz force
- Simulations
- Conclusion

TRIUMF's e-linac driving configuration

 TRIUMF's e-Linac acceleration cryomudule, consists of 2 9 cell cavities and is operated with a single klystron in CW mode and vector sum control.

Operational experience

• Amplitude oscillation in both cavities (operational gradient dependent)

Time to grow oscillations $\approx 6 - 10$ seconds

Parametric oscillations

• "A parametric oscillator is a driven harmonic oscillator in which the oscillations are driven by varying some parameter of the system frequency, typically different from the natural frequency of the oscillator", *Wikipedia*

- Examples:
 - Kid on a swing
 - Roll instabilities of ships

Lorentz oscillation problem formulation

- Lorentz force is driving a cavity as spring mass system
 - $m\ddot{x} + c\dot{x} + kx = F$
 - $F = -K_L V_{acc}^2$
 - $V_{acc} = \gamma V_g \cos(\varphi)$
 - $\varphi = tan^{-1}(\tau \Delta \omega)$
 - $\Delta \omega = bx$

 $K_L = lorentz \ constant$ $\gamma = coupling \ factor$ $V_g = generator \ voltage$ $\varphi = detuning \ angle$ $\tau = cavity \ time \ constant$ $b = cavity \ sensitivity$

• Equation of motion:

$$m\ddot{x} + c\dot{x} + kx$$

= $-K_L\gamma^2 V_g^2 \{\cos^2(tan^{-1}(\tau b(a+x)) - \cos^2(tan^{-1}(\tau ba))\}$

Nonlinear system

Nonlinear system stability analysis

- System is said to be stable in the sense of Lyapunov if
 - V(x) > 0, V(x) Lyapunov function candidate
 - $\dot{V}(x) < 0$

• With
$$x_1 = x, x_2 = \dot{x}$$

$$m\ddot{x} + c\dot{x} + kx = \Lambda(x)$$

$$\Lambda(x) = Lorentz force$$

•
$$V = \frac{k}{2}x_1^2 + \frac{1}{2}mx_2^2$$

• $\dot{V} = \Lambda(x_1)x_1 - cx_2^2$

Only stable if

$$\Lambda(x_1)x_1 < c x_2^2$$

Stability depends on the input power and the cavity spring constant

Parametric oscillations in cavity with lorentz force

Lorentz force oscillation differential equation

•
$$m\ddot{x} + c\dot{x} + kx = K_L V_g^2 \gamma^2 cos^2 (tan^{-1}(\tau b(a+x))) cos^2 (tan^{-1}(\tau ba))(2a+x)x$$

• $m\ddot{x} + c\dot{x} + (k - K_L V_g^2 \gamma^2 cos^2 (tan^{-1} (\tau b(a + x))) cos^2 (tan^{-1} (\tau ba))(2a + x))x = 0$

• Assume solution: $x = \mu \cos(\omega t)$ and substitute in nonlinear part to get an approximate solution

 $(k - K_L V_g^2 \gamma^2 cos^2 (tan^{-1} (\tau b(a + \mu cos(\omega t))))$ Time dependent resonance frequency

General differential equation for parametric oscillation

• $\ddot{x} + \beta(t)\dot{x} + \omega^2(t)x = 0$

Conclusion and lookout

- Theory of Lorentz force has been analyzed
 - Stability conditions for stable operation are established
- Simulated system results are in agreement with system experience
 - Increasing oscillation amplitude can only be observed at high gradients
 - Stable for $\Delta \omega < 0$, unstable for $\Delta \omega > 0$

 Next steps: Analyze double cavity system in vector sum control

Thank you for your consideration!