Fermilab

Managed by Fermi Research Alliance, LLC for the U.S. Department of Energy Office of Science

Fine Freq Resolution TF Measurements of a Cavity System to Characterize High-Q Mechanical Resonances

P. Varghese, B. Chase, J. EinsteinTF Measurments for High-Q Resonances26 October 2018

Measurement Goals

- Use higher resolution measurements to capture high Q resonances
- Obtain frequency response function based on input output time series data
- Use System Identification Tools to create a system model
- Apply controllability and observability tests to see if system is controllable

Frequency resolution vs Detectable Resonance Q

Test Setup

Transfer Function Computation

Measured Frequency Response

Cross Talk Frequency Response

Model Fit using System Identification

 $\begin{aligned} x(k+1) &= Ax(k) + Bu(k), & A \to n \times n, B \to n \times r \\ y(k) &= Cx(k) + Du(k), & C \to m \times n, D \to m \times r \end{aligned}$

- A SISO system has r, m = 1
- Eigen values of A represent the poles of the system
- The imaginary part represents resonant frequencies f_n

0	49	172	174	180	192	223	248	259	270	271

 $P = [B : AB : A^2B : \dots : A^{n-1}B], \qquad P \to n \times rn$

 $Q = \left[C^T \vdots A^T C^T \vdots (A^T)^2 C^T \vdots \cdots \vdots (A^T)^{n-1} C^T \right], \qquad Q \to n \times mn$

- System is completely controllable if and only if the rank of P is n
- If a system is controllable, it can be driven from an initial state x(0) to zero in a finite number of steps N.
- System is completely observable if and only if the rank of Q is n
- If a system is observable, its state x(0) can be determined from the outputs y[0,N] where N is finite

Example

$$A = \begin{bmatrix} -7 & -2 & 6 \\ 2 & -3 & -2 \\ -2 & -2 & 1 \end{bmatrix} \qquad B = \begin{bmatrix} 1 & 1 \\ 1 & -1 \\ 1 & 0 \end{bmatrix} \qquad C = \begin{bmatrix} -1 & -1 & 2 \\ 1 & 1 & -1 \end{bmatrix}$$

Eigen values of A are -1, -3 and -5, the state equations can be represented in the canonical form with a co-ordinate transformation q = Mx, the state equations can be written as

$$\dot{q} = \begin{bmatrix} -1 & 0 & 0 \\ 0 & -3 & 0 \\ 0 & 0 & -5 \end{bmatrix} q + \begin{bmatrix} 0 & 0 \\ 1 & 0 \\ 0 & 1 \end{bmatrix} u, \qquad \qquad y = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \end{bmatrix} q,$$

Mode 1 is not controllable and mode 3 is not observable

Controllability/Observability Test

15.39539	-7.21418	4.364227	-3.81035	2.542323	-2.67694	2.261203	-1.5379	1.66352	-1.36785	0.728496	-0.031	-0.96989	1.296271	-1.09175	0.68342	-0.66065	0.493051	-0.27727	0.22277	-0.11461	0.057019
16	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	8	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	4	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	4	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	2	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	2	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	2	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0.5	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0.5	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0.5	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0.5	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0.25	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0.25	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0.125	0

 $P = \begin{bmatrix} B \ \vdots AB \ \vdots A^2B \ \vdots \ \cdots \ \vdots \ A^{21}B \end{bmatrix}, \qquad P \to 22 \times 22$

 $Q = \begin{bmatrix} C^T \vdots A^T C^T \vdots (A^T)^2 C^T \vdots \cdots \vdots (A^T)^{21} C^T \end{bmatrix}, \qquad Q \to 22 \times 22$

Rank(P) = 22, System Controllable

Rank(Q) = 14, System not Observable

Conclusions

- Piezo actuator in the longitudinal axis cannot directly cancel out vibrations excited in the transverse axis
- Even if transverse vibrational modes are uncontrollable, the detuning that they create may be counteracted by the longitudinal piezo actuator
- The controllability tests on the model extracted indicates that it should be possible to build a stable state feedback system for this model.
- Controller design and simulation needs to be done to validate the model and evaluate the performance

