

#### A. Neumann Helmholtz-Zentrum Berlin

# **Microphonics control studies** for high Q<sub>1</sub> SRF Cavities

# Module commissioning of the **bERLinPro SRF Gun**

Second Topical Workshop on Cryomodule Microphonics and Resonance Control, Brooklyn, NY



Microphonics and Resonance Control LLRF Workshop Series

#### Systems under study







G.P. Gelata et al. International Journal of Thermal Sciences Volume 58, August 2012, Pages 1-8



### Microphonics: What do we see?



- The cavity is the best sensor of mechanical excitation itself, true?
  → What deformation affects actually the RF mode (TM<sub>0yz</sub> different than e.g. TM<sub>1yz</sub>)? Cavity design: Cavity sensitivities
- Helium bath often main driver of microphonics, usually the static term  $\Delta f/\Delta P$  can be measured or the cavity design optimized for
  - → What about dynamic response?
- Detuning is often obtained by comparing forward and transmitted (reflected) wave of the TM<sub>010</sub>  $\pi$ -mode (or FPC excited RF mode).
  - → We only see what affects the RF mode, not all oscillations, do we care? Cavity oscillations w.r.t. beam motion?
- → Is this always what we consider microphonics (oscillations in acoustic regime)?
  → Can we compensate every oscillation which affects the wanted cavity RF mode using tuner with e.g. piezos?

#### Be aware of other contributions to appear in the signal:

- Transient beam-loading (hopefully repetitive, but what about beam losses in recirculating machines?) ←→ beam arrival jitter, synchrotron oscillations
- Multipacting in more special cavities (e.g. SRF gun, coaxial parts)
- Loop oscillates if stability criterion is not met
- Coaxial FPC: Oscillation of inner conductor (cooling media)
- $\rightarrow$  Some of them alter the measurement, some are real detuning, but eventually not tackled by tuners

## Detuning characterization of a TESLA cavity, short-term



10<sup>2</sup>

10<sup>3</sup>



# Microphonics and thermal load on cavity tank





# Correlation of Helium pressure and detuning of cavity





- Open loop measurement of cavity frequency and He pressure
- 50-60 Hz/mbar down to resolution limit of pressure meters (~1Hz)
- Evidence that main contribution of microphonics mediated through

superfluid Helium

## Longterm stability: Peak events $\rightarrow$ how much, how often?

# Zentrum Berlin

#### Microphonics recorded at HoBiCaT with TESLA cavity for 48 hours at E<sub>acc</sub>=8MV/m

- RMS Values around 1-5 Hz  $\leftarrow$  Determines field stability and thermal loading of RF system (5 kW)
- Peak values extend out to 17  $\sigma! \leftarrow$  Determines RF power installation (15 kW)
- Peak events occur 10-20 times a day! (This was partly improved by changes to the control settings of the under-press. pumps.)
  - Expected field stability: 0.02 0.1°
  - For "comfort" want to reduce the microphonics



Detuning (Hz)



## **Tuner qualification**

HZB Helmholtz

Tested 3(4) different tuner systems







|                             | Saclay I*         | Saclay II          | INFN Blade**        |  |
|-----------------------------|-------------------|--------------------|---------------------|--|
| Mech. principle             | 1-lever+flexures  | 2-levers+flexures  | Knee-lever+blades   |  |
| Tuning resolution           | 0.176Hz/step      | 0.09 Hz/step       | Hz/step 2.6 Hz/step |  |
| Drive                       | Phytron / HD 1:88 | Phytron / HD 1:88  | Sanyo / PG 1:100    |  |
| Max remanence               | 30 Hz             | 55 Hz              | 380 Hz              |  |
| Coarse tuning range         | 750 kHz           | 500 kHz            | 720 kHz             |  |
| Coercitive steps            | 180 (no backlash) | 350-500 (backlash) | 100 (backlash)      |  |
| Used piezo type             | HV (0-1000V)      | LV (-10-150V)      | LV (0-200V)         |  |
| Piezo tuning range          | 750 Hz            | 1420 Hz            | 800 Hz              |  |
| <b>Group delay (dφ/d</b> ω) | 290 µs            | 150 μs             | 650 μs (138 μs)***  |  |
| Lowest resonance            | 40 Hz             | 40 Hz (double)     | 35 Hz               |  |

#### → Important for CW piezo based detuning control

- \* Increased stiffness of piezo holder frame
- \*\* Several versions exist

MRCW18 Session 5, A. Neumann

\*\*\* 138 µs for 1.4 cell SRF gun with **Cornell blade tuner** 



#### Model based controller: Fit of the system



 $\Delta \ddot{\omega}_{cav,k}(t) + 2\xi \omega_{m,k} \cdot \Delta \dot{\omega}_{cav,k}(t) + \omega_{m,k}^2 \cdot \Delta \omega_{cav,k} = \pm k_{p,k} 2\pi \omega_{m,k}^2 V_{Piezo}(t)$ 





But: Only LF and piezo transfer functions accesible in operation!

- Fit: Parallel acting 2<sup>nd</sup> order systems
- Evaluate response of higher modes at lower frequencies
- >20 modes needed for fit
- Systems complexity complicates use of model based feedbacks (e.g. Kalman filter)

Transfer function as look-up table or Kalman approach tested with cavity simulator See talk A. Ushakov

## A tested scheme: Least-mean-square based adaptive feedforward

External mechanical  $\rightarrow$  Mostly by helium system, unknown! oscillations ∆l (nm) FFT Compensating signal Detuning t (s) ∆f (Hz) of the cavity **ΔU (V)** ext⇒∆f IFFT Т t (s) •H<sup>-1</sup> t (s) FIR ⊓<sub>Piezo→∆f</sub> Filter W[n] **()** Nyquist frequency: f\_/2=1.0 kHz LMS Magnitude (dB) 380 03 H 0.5 ≩ -0 Calculation of optimal -3 -1. **FIR** filter parameters 10<sup>-1</sup> 10-2 10<sup>2</sup> 10<sup>3</sup> -2 -1.5 -0.5 0.5 1.5 2 10<sup>6</sup> 10<sup>1</sup> 0  $W_2$ Frequency (Hz)

A. Neumann et al, Phys. Rev. ST Accel. Beams 13, 082001



#### **Piezo based compensation results**



14 deg phase mod. down to 2 deg  $\rightarrow$  sub-promille stability in theory possible



Multi-resonance control:

Piezo resolution seems to limit control of neighboring modes → transfer of energy

Resonances: Control voltage of mV regime required before amplifier

MRCW18 Session 5, A. Neumann

Helmholtz

### LLRF studies with U Cornell: Limits of Q<sub>L</sub>





# SRF Gun for bERLinPro: Stability issues





Thermal short → high static losses (20 W) trial to cool via filling line, no phase separator, thus flash gas lead to bubble formation beating the cavity up to 3 kHz (PLL-mode)!



- SRF gun cavities have high sensitivity to Lorentz force, up to 3 kHz tuning for target field required, higher probability of ponderomotive instabilities
- Several cooling media attached to cavity and ancillaries: Cooling of normal conducting cathode via 80K helium gas
   → Vibration of cathode? Would act as a plunger modulating the TM<sub>010</sub>-π mode (depending on cathode position)
- 80 K cooling of HOM absorber....

## Some example during SRF gun operation



#### MRCW18 Session 5, A, Neumann

Phase (degree)

P<sub>forward</sub>. (a.u.)

-0.5

**Zentrum Berlin bERLinPro** 

Multipacting?

 $10^{4}$ 

## SRF gun cavity LLRF operation







### SRF gun cavity LLRF operation: Limits







- Low beam-loaded high Q<sub>L</sub> operated multi-cell SRF elliptical cavities can be operate up to Q<sub>L</sub> of 2·10<sup>8</sup> with stability below 0.02°
  → For better stability 5-7·10<sup>7</sup>
- Microphonics compensation can gain an order of magnitude and thus lower thermal load via FPC
- Major contributions bia excited mechanical eigenmode, often lowest transverse mode
- Excitation most probably transferred via helium system
- Special cavities like SRF guns demand for higher level of tuning control as they are more susceptible by design (half-cell)
- Operation at high losses or close to quench limit will open up new surprises, higher level of microphonics

#### Future studies $\rightarrow$

- Apply Kalman (A. Ushakov) and LMS feedforward control to SRF cavities as SRF gun, Booster 2-cell and Linac multi-cell
- Develop tuning strategies and firmware for high current and transient beam-loading cases (see talk P. Echevarria)

**Zentrum Berlin UbERLinPro** 

20

Thanks to all collaborators and partners of the past, present and future projects and co-workers at HZB:





CW operation: A electro-magnetic-mechanical -thermo-acoustic coupled problem?





Cavity driven by LLRF at  $E_0=15$  MV/m Piezo compensation in PI loop mode with low-pass filtering,  $Q_L=1.4\cdot10^7$ 

Additional power dissipated in L<sub>He</sub> bath by heater (few cm<sup>2</sup>) within liquid Microphonics recorded while heater is powered 22

# LLRF studies: Summary





| QL                | σ <sub>f</sub> (Hz) | $\sigma_{\phi}$ (deg) | σ <sub>A</sub> /A  | P <sub>f</sub> (kW) |
|-------------------|---------------------|-----------------------|--------------------|---------------------|
| 5·10 <sup>7</sup> | 9.5                 | 0.008                 | 1.10-4             | 1.106               |
| 1·10 <sup>8</sup> | 7.9                 | 0.009                 | 2·10 <sup>-4</sup> | 0.595               |
| 2·10 <sup>8</sup> | 4.2                 | 0.024                 | 3.10-4             | 0.324               |

# Tuner dynamics: Higher order response?





Here complete detuning spectrum taken at a given excitation frequency

 -12 Usually transfer functions taken with lock-in amplifier to reduce
 -16 noise content (Stanford Research,

SR850)

Measured with first version of piezo frame (2005-2006) Higher harmonic content most probably by piezo amplifier (even within drive signal?) Measured at high excitation amplitudes (above 20 Hz)

# Detuning spectrum versus bandwidth

For two different tuning schemes (Saclay I and INFN Blade) open loop measurements of microphonics vs.  $Q_L$  were performed

Both tuners showed to have different transfer functions and thus detuning spectra on the same cavity type!





