Microphonics experience in HIE-ISOLDE at CERN

<u>A. Miyazaki^{1,2}</u> D. Valuch¹, and W. Venturini Delsolaro¹

¹ Organisation européenne pour la recherche nucléaire (CERN), Switzerland

² School of Physics and Astronomy, the University of Manchester, UK

Email: Akira.Miyazaki@cern.ch

LLRF2018 topical Workshop on Microphonics @ NY

HIE-ISOLDE Cryomodule

- 5 Quarter-wave resonators (QWR) in 1 CM
- Nb film sputtered on Cu substrate (10 mm thick)
 - Cf. bulk Nb cavities 3 mm thick
- Conduction cooling through Cu
- Common vacuum inside and outside the cavity
- Pressure sensitivity 0.01 Hz/mbar
- Nb/Cu cavities can be robust against microphonics
- Thermal issue in coupler \rightarrow Operation BW 5-10 Hz

Frequency perturbations (measured in SEL mode)

Cryogenic perturbation during RF commissioning 2018

Optimize PID parameters and regulation target in cryogenic system \rightarrow stabilize the system

Strategy from LLRF side

- No stepper-motor motion
- Compensated by forward power (RMS 100W, max 750W)
- Solid-state amplifiers (750W) can still handle the system

Faster microphonics observed in one cavity 78 Hz noise

We felt obvious vibration on the vessel in this particular CM

- The FB operation required much higher power than other cavities (400W >>RMS 40W)
- Demodulation of spectrum analyzer signal showed 78 Hz vibration in resonant frequency
- Tunnel access \rightarrow obvious vibration was detected *by hand* in one cryomodule
- Stop active pumping \rightarrow vibration and correspondingly frequency modulation stopped

- Intuitively, more trips with active pumping but no enough time to do statistical testing during RF commissioning
- We decided to keep active pumping and limit the field level of this cavity (4MV/m < nominal 6MV/m)

Impact of power cut (July 28th)

- The cryogenic plant stopped by (short) power cut and took 6 hours to restart sending LHe
- A sensitive cavity was affected by the cryogenic instability for a couple of days
- We skipped the cavity for the physics run during that week

Rare events

Observed twice during 2018 summer

19th cavity on June 12th : lasted 1 week and disappeared 9th cavity on September 6th : lasted 1 week and disappeared We did not change any parameters!

Rare events

- Apparently, FB algorithm found strange "operation point" where the tuner loop cannot fix the resonance
- No field emission in the cavity, cryogenics is stable, ...
- The LLRF card was replaced \rightarrow no impact
- We suspect field-induced vibration of probably the tuning plate ightarrow dedicated test in vertical cryostat is planned

Summary

- The thick Cu wall is very insensitive to pressure variation but the thin tuning plate is an issue when operation BW is extremely low
 - Thicker TP is recommended for the future project (better understanding of pre-tuning)
- HIE-ISOLDE cryomodules suffer from three different "vibrations"
 - Slow but significant (>BW) mechanical detuning per 1-2min
 - Fast microphonics probably due to active pumping
 - Maybe very rare field-induced vibration when certain condition is fulfilled
- LLRF system compensate the oscillation by the margin of 750W solid-state amplifier, and is operational if cryogenic system is quiet enough
- Sometimes we face rare events which cannot be just solved by LLRF and we
 pragmatically either limit the field level or skip the cavity
 - The users during very precious beam time never wait us!

backup

Tuner and coupler

Tuner and coupler

Tuner and coupler

stepper motor for tuner and Cavity and motor system is mechanically coupled to the insert

15

Thermal fault of fundamental power coupler → Extremely narrow Operation BW 5-10 Hz

Stable condition

Timeseries Chart between 2018-10-03 14:00:00.000 and 2018-10-04 08:20:16.632 (LOCAL_TIME)

🔶 ALLHIE.199.XLH2.CAV1:RDBCK_CH1FIELD 🐳 ALLHIE.199.XLH2.CAV1:RDBCK_CH1PHASE 🐳 ALLHIE.199.XLH2.CAV1:RDBCK_CH2PWR 🐳 ALLHIE.199.XLH2.TUN1:DELTAF 🐳 ALLHIE.199.XLH2.TUN1:STEPS

Lesson learned

- Microphonics issues are linked to all the aspects of the project
 - Nb/Cu is potentially insensitive to vibration thanks to its thicker wall
 - Frequency pre-tuning was not precise → wide tuning range required (40kHz) → very thin TP → sensitive to vibration
 - Poor cooling of the coupler did not allow wide BW (>30Hz) operation → extremely narrow BW (5Hz)
 - Common vacuum → stepper motor far away and no fast tuner like piezo next to the TP
 → only slow mechanical tuning no possible active damping
 - Cryogenics perturbation
 - Vibration propagated from the active pumping unit
- LLRF algorithms can compensate the issues but there are certain limitations
- Pragmatic decision is sometimes necessary once physics campaign starts