

CEBAF Tuners: 1980 - 2018

Naeem Huque on behalf of the JLab SRF team

MRCW18 – October 25th – 26th, 2018

Introduction

- A number of different cryomodules are (have been) in operation at CEBAF
 - C20/C50
 - Renascence (C100 Prototype)
 - C100
- The CMs have unique tuner styles
- Microphonics issues found during testing and operation have been solved by both design and retroactive modification

CEBAF Cryomodules

Renascence

CEBAF Upgrade prototype

C20/C50

- Original CEBAF cryomodules (C20)
- Reworked to create C50 cryomodules

C100

• Upgrade CEBAF cryomodules

Overview

	CEBAF (C20/C50)	CEBAF Upgrade (Renascence)	CEBAF Upgrade (C100)
Cavity	5-Cell	7-Cell	7-Cell
Frequency (MHz)	1497	1497	1497
Gradient per Cavity (MV/m)	5	18	19.2
Operating Mode	CW	CW	CW
Bandwidth (Hz)	220	75	75
Q _{external}	6.6 x 10 ⁶	2.0 x 10 ⁷	2.0 x 10 ⁷
Lorentz Detuning (Hz)	75	324	312
Microphonics (Hz, 6σ)	-	±10	±10
Stiffness (lb/in)	26,000	20,000-40,000	37,000
Sensitivity (Hz/µm)	373 (calc)	~300 (calc)	267 (calc)

J.Delayen, Tuning Systems, USPAS 2008

C20/C50 Tuner specs

	C20/C50 Tuner	
Coarse Range (kHz)	+/- 200	
Coarse Resolution (Hz)	NA	
Backlash (Hz)	> 100	
Fine Range	None	
Fine Resolution (Hz)	N/A	
Tuning Method	Tension/Comp	
Tuner Environment	Immersed (He)	
Drive Environment	Vacuum/Warm	
Motor Stoke (in)	0.25	

P. Kneisel, J. Mamosser, *Mechanical Tuner for 5-Cell Cavity,* JLab Tech Note TN91-043

ananonar'	-12-153 Alge n 554	Tuner 5	est #3	6/17/91	
			· · · · · · · · · · · · · · · · · · ·	f (hhz)	
			33 .2J		
		UN CONTRACTOR	16 <u>3</u> 3-		
		11.00			
					i dala di dala Nationale di dala di da
-17	· ω ^ζ - 3γ· ω ^ς	2×6 ⁵ 10	s ^{1493.5}	105	True 3245 4×105
			1443⊀ -		
	1				
	. *				
er, 📗			1493 G -		
5-			ou obi#	avial displa	cement
ch 🖺	Fig. 2	: Frequence	by shint v	s. axiai uispia	

C20/C50 Tuner

C20/C50 Tuner

- The tuner is attached to the first cell with a fixed cell holder, and to the fifth with a swivel cell holder.
- 4 cells are tuned, with the 5th being fixed
- A rigid titanium rod connects the two holders at one end and a drive shaft assembly connects the two at the other end.
- Tuning is accomplished by translating rotational motion of the worm/wheel gear assembly into axial movement of the swivel cell holder

J. Marshall, J. Preble, W. Schneider, Superconducting Cavity Tuner Performance at CEBAF, PAC 1993

C20/C50 Tuner Performance

- Feedback control system measures the phase difference between the forward and transmitted power, calculates the tuning angle, and drives the tuner stepper motor
- 20 degrees of phase shift corresponds to 41 Hz of frequency shift
- Changes in angle results from fluctuations in helium bath pressure, where +/- 1 torr results in shift of 100 Hz
- At the design gradient of 5 MV/m, the frequency shifts ~75 Hz due to radiation pressure

Tuner on original 5-Cell cavity (top) and an improved low loss 5-Cell cavity (bottom) for new C75 cryomodules

J. Marshall, J. Preble, W. Schneider, *Superconducting Cavity Tuner Performance at CEBAF*, PAC 1993

C20/C50 Tuner Issues

- Early production tuners had several functional issues (see below):
 - a) Backlash caused by motor-to-tuner gear slop
 - b) Cell/cell holder thermal mismatch
 - c) Deadband due to lack of cavity/tuner pre-stress
- Hysteresis at resonance was +/- 10 kHz, mostly due to cell/holder gap
- Excessive motor operation could lead to repairs every 7 years against expected maintenance every 10 years

J. Marshall, J. Preble, W. Schneider, *Superconducting Cavity Tuner Performance at CEBAF*, PAC 1993

C20/C50 Tuner Remedies

- Difference in thermal coefficients between aluminum and Nb results in inherent hysteresis
- Holders were manufactured as half-cells matching contours of the cavities
- Final assembly included the addition of shims (~0.010 thick)
- Deadband was shifted to 30 KHz under resonance
- Plots show +/- 50kHz and +/- 5kHz hysteresis loops
- Cell holder shapes have been modified for use in new C75 cryomodules

Motor revolutions

J. Marshall, J. Preble, W. Schneider, *Superconducting Cavity Tuner Performance at CEBAF*, PAC 1993

Renascence Tuner Specs

	Renascence Tuner
Coarse Range (kHz)	> 400
Coarse Resolution (Hz)	< 100
Backlash (Hz)	< 25
Fine Range (kHz)	1.0
Fine Resolution (Hz)	< 1
Tuning Method	Tension
Tuner Environment	Vacuum
Drive Environment	Vacuum/Cold

Renascence Tuner

0

Renascence Tuner Features

- New HOM design for upgrade cavities left no beamline space for cavity tuner
- Renascence tuner is designed to apply a large force over a relatively short distance; it has a mechanical advantage of 30:1
- Coarse tuning is via a Phytron stepper motor (200 steps/rev) attached to a Harmonic Drive (Ratio 100:1)
- Fine tuning is via a 40mm
 Piezo stack
- Components are in insulating vacuum and operate cold
- Vacuum vessel included flange ports to allow for motor and piezo replacement

E.Daly, G.K. Davis, W.R. Hicks, *Testing of the New Tuner Design for the CEBAF 12 GeV Upgrade SRF Cavities,* PAC 2005

Renascence Tuner Operation

- Tuner is installed on individual cavity helium vessels
- Cavities tuned in tension by stepper motor and harmonic drive (ratio 100:1)
- Motor pushes one end of the primary lever downwards
- Primary lever motion causes secondary lever to rotate about pins and stretch cavity in tension
- Secondary lever ensures even load distribution on cavity
- Piezo actuator stacks are compressively loaded as motor is actuated
- Piezos can compress or expand to provide fine tuning

E.Daly, G.K. Davis, W.R. Hicks, Testing of the New Tuner Design for the CEBAF 12 GeV Upgrade SRF Cavities, PAC 2005

Renascence Tuner Performance

- Tuner was tested on Low Loss (LL004) and High Gradient (HGPT) cavities
- Tuner range:
 0 1000 kHz (spec 400kHz)
- Tuning sensitivity (top graph):
 0.73 Hz per step for HGPT
 0.57 Hz/step for LL004
- Decrease in frequency change is due to tuning mechanism following cosine function
- Piezo response:
 - 0.35 0.60 Hz/volt (bottom graph)
- Possible reliability issues with cold motor/piezos caused this tuner design to be scrapped for future C100 cryomodules

E.Daly, G.K. Davis, W.R. Hicks, *Testing of the New Tuner Design* for the CEBAF 12 GeV Upgrade SRF Cavities, PAC 2005

Jefferson L

C100 Tuner Specs

	C100 Tuner	
Coarse Range (kHz)	+/- 200	
Coarse Resolution (Hz)	< 2	
Backlash (Hz)	< 3	
Fine Range	550 Hz (150V)	
Fine Resolution (Hz) <1		
Tuning Method	Tension	
Tuner Environment	Vacuum	
Drive Environment	Vacuum/Warm	

C100 Tuner

C100 Tuner

- Stepper Motor
 - 200 step/rev
- Harmonic Drive
 - Gear Reduction = 80:1
- Low voltage piezo
 - 50 μm stroke (150 V)
- Ball screw
 - Lead = 4 mm
 - Pitch = 25.75 mm
- Bellows/slides
 - axial thermal contraction

J.R. Delayen, L. Doolittle, E. Feldl, V. Nguyen, W. Sachleben, *Frequency Tuning of the CEBAF Upgrade Cavities*, PAC 1999, New York

C100 Tuner Features

- Scissor jack mechanism
 - Ti-6Al-4V Cold flexures & fulcrum bars
 - Cavity tuned in tension only
- Warm transmission
 - Stepper motor, harmonic drive, piezo and ball screw mounted on top of CM
 - Openings required in shielding and vacuum tank
 - Originally due to a lack of confidence in the reliability of cold motor systems

E.F. Daly, Overview of Existing Tuner Systems, ERL Workshop 18-23

MAR 2005

C100 Tuner Operation

- Motion transferred through concentric tubes moving axially, relative to one another
- Tubes engage scissor-jack assembly
 - Attached to hubs on cavity
 - Pivots against fulcrum bars
 - Downward motion of ball-screw causes cavity stretch
- Piezo stacks originally installed as backup for coarse tuner not being able to fine tune
- No bellows between cavities
 - Need to accommodate thermal contraction of cavity string
 - Pre-load and offset each tuner while warm

G. Davis, J. Delayen, M.Drury, E. Feldl, *Development and Testing of a Prototype Tuner for the CEBAF Upgrade Cryomodule*

C100 Tuner Performance

- Coarse Tuner:
 - Range: 343 kHz
 - Resolution: < 2 Hz
 - Hysteresis (at 700 Hz): 153 Hz
 - Repeatability (at 700 Hz): 37 Hz
- Fine Tuner (Piezo):
 - Range: 2.4 kHz
 - Resolution: 1 Hz
 - Hysteresis (at 2.5 kHz): 933 Hz
 - Repeatability (at 2.5 kHz): 329 Hz
- Note: Piezo stacks are currently only installed on one C100 in the CEBAF tunnel

G. Davis, J. Delayen, M.Drury, E. Feldl, Development and Testing of a Prototype Tuner for the CEBAF Upgrade Cryomodule

- Operational microphonics were found to be higher than the 10 Hz spec
- The cause was determined to be cost-saving measures that reduced the stiffness of the tuner/cavity
- Thicker Pivot Plates were proposed as the simplest solution
- New setup tested warm on test bench, and on C100-5 in the tunnel
- New design (C100-4 onwards) showed marked improvement
- Retrofits applied to C100-1 to C100-3
 - Stiffen tuner stack
 - Bracing for waveguides
 - Bricks and bags (see T.Powers talk)

K. Davis, J. Matalevich, T. Powers, M. Wiseman, Virbation Response Testing of the 12GeV Upgrade Cryomodule, LINAC 2012

Warm Transfer Function Measurements

- Improvements to the tuner stiffness did not significantly affect the axial vibrational response of the cavity
- Improvements to the tuner stiffness did reduce the lateral, bending, modes of the cavity. It also reduced cavity response to the 10 Hz rigid-body mode of the entire 8-cavity string.

Original Tuner

Stiffened Tuner

K. Davis, J. Matalevich, T. Powers, M. Wiseman, Virbation Response Testing of the 12GeV Upgrade Cryomodule, LINAC 2012

Comparison of C100-1 (Original Tuner) and C100-5 (Stiffened Tuner)

(Bottom)

Original Tuner (Top) and Stiffened Tuner (Bottom)

K. Davis, J. Matalevich, T. Powers, M. Wiseman, Virbation Response Testing of the 12GeV Upgrade Cryomodule, LINAC 2012

C100-1-1 deltaF

C100-1-2 deltaF C100-1-3 deltaF

C100-1-4 deltaF

C100-5-2 delta

C100-5-3 delta

C100-5-4 deltal

- The microphonics are substantially smaller in the cryomodule with stiffened tuners.
- The harmonics at 10 Hz and 45 Hz were substantially reduced in the cryomodule with the stiffened tuners.
- The 25 Hz component in C100-1 was not reduced substantially in C100-5. However, it was shifted up in frequency slightly as predicted by the modeling and warm tests.
- Operational testing in the CEBAF LINAC show an average of 47% improvement for ambient microphonic detuning for C100-5 (modified tuner) vs C100-1 (baseline tuner).
- Studies ongoing to use piezos to control microphonics

Cryomodule	C100-1 (baseline)	C100-5 (modified)	% Improved
Cavity 1	11.8 Hz	5.1 Hz	57%
Cavity 2	12.8 Hz	6.7 Hz	48%
Cavity 3	13.7 Hz	5.6 Hz	59%
Cavity 4	13.5 Hz	7.4 Hz	46%
Cavity 5	18.0 Hz	9.6 Hz	46%
Cavity 6	9.1 Hz	8.5 Hz	8%
Cavity 7	9.7 Hz	5.6 Hz	42%
Cavity 8	8.9 Hz	5.8 Hz	35%

Operational Microphonics in the CEBAF Tunnel, Baseline vs Modified Design (Peak Detuning)

K. Davis, J. Matalevich, T. Powers, M. Wiseman, Virbation Response Testing of the 12GeV Upgrade Cryomodule, LINAC 2012

Summary

- Unique tuners are in operation on several cryomodule/cavity types in the CEBAF tunnel
- C20/C50 tuners and C100 tuners are in current operation, and the Renascence-style tuner was also tested in the tunnel
- Lessons from testing and operations lead to improvements in design

Questions?

