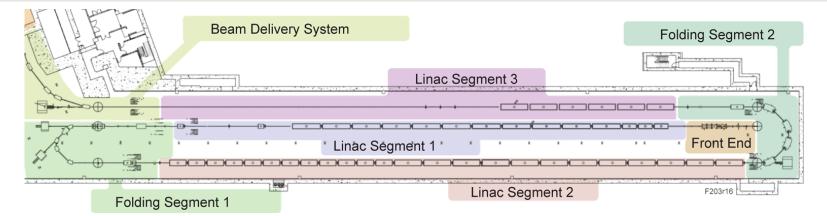


Pneumatic Tuner Digital Control

Harsh Maniar RF Controls Engineer II

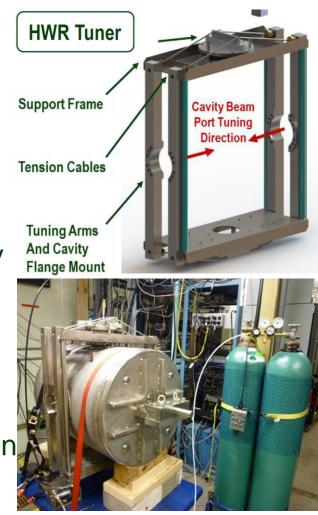

This material is based upon work supported by the U.S. Department of Energy Office of Science under Cooperative Agreement DE-SC0000661, the State of Michigan and Michigan State University. Michigan State University designs and establishes FRIB as a DOE Office of Science National User Facility in support of the mission of the Office of Nuclear Physics.

Agenda

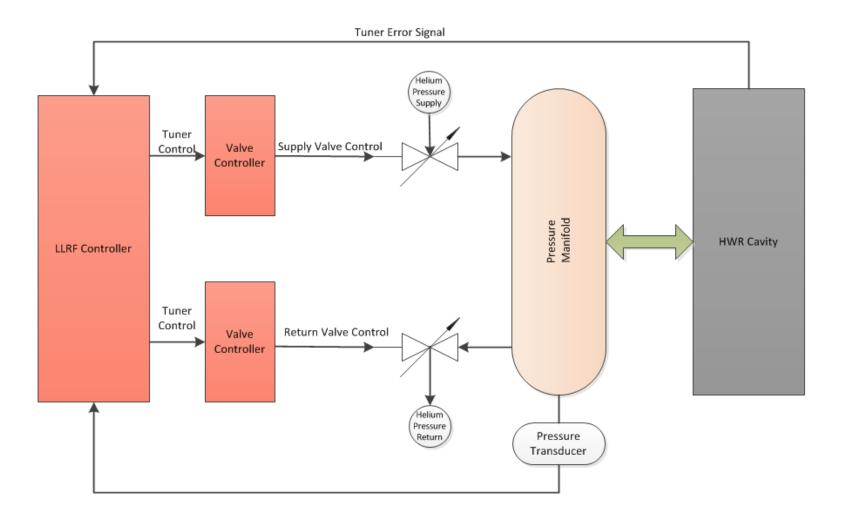
- Overview
- System diagram
- Analog circuit
- Digital implementation of pneumatic tuner control
- Pressure transducer
- User interface
- Pneumatic valve calibration
- Conclusions & Reference

FRIB Linac Overview

System	Area	Frequency	Cavity Type	Required RF Power	Amplifier Type	Tuner	Qty
Ion Source	FE	14 GHz	ECR	2 kW	Klystron	N/A	1
LEBT Multi-Harmonic Buncher	FE	40.25 MHz - 120.75 MHz	RT	100 W	SS	N/A	3
RFQ Driver	FE	80.5 MHz	RT	8 kW	SS	N/A	1
RFQ Final (Tetrode)	FE	80.5 MHz	RT	100 kW	Tetrode	Servo (water)	1
MEBT Buncher	FE	80.5 MHz	RT	4 kW	SS	2-phase stepper	2
β =0.041 (accelerating)	LS1	80.5 MHz	SC	700 W	SS	2-phase stepper	12
β =0.085 (accelerating and matching)	LS1 - FS1	80.5 MHz	SC	2.5 kW	SS	2-phase stepper	92
IH Multi-Gap Buncher	FS1	161 MHz	RT	18 kW	SS	5-phase stepper	2
β =0.285 (accelerating and matching)	LS2	322 MHz	SC	3.0 kW	SS	Pneumatic	72
β =0.530 (accelerating and matching)	LS2-LS3	322 MHz	SC	5.0 kW	SS	Pneumatic	148

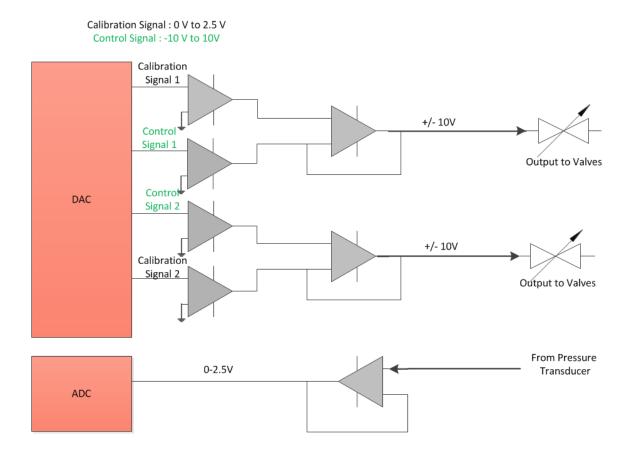


Facility for Rare Isotope Beams


Pneumatic Tuner Overview

- Half Wave Resonator(HWR) cavities use pneumatic tuner to adjust cavity frequency
 - 72 of β = 0.29 and 148 of β = 0.53 cavities in FRIB
- Digital implementation of pneumatic tuner control has been developed based on analog pneumatic tuner control used at ANL [1]
- Helium gas manifold pressure is controlled by opening and closing of pneumatic control valves (supply and return)
- Pneumatic valve calibration technique has been developed
- Improper tuner control voltages and calibration can lead to cavity detuning due to Lorentz force

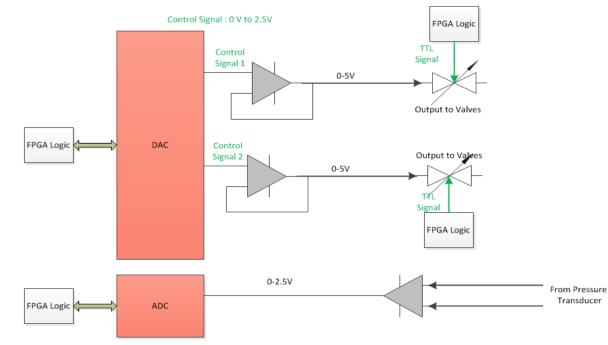
System Diagram



Facility for Rare Isotope Beams

Analog Circuit

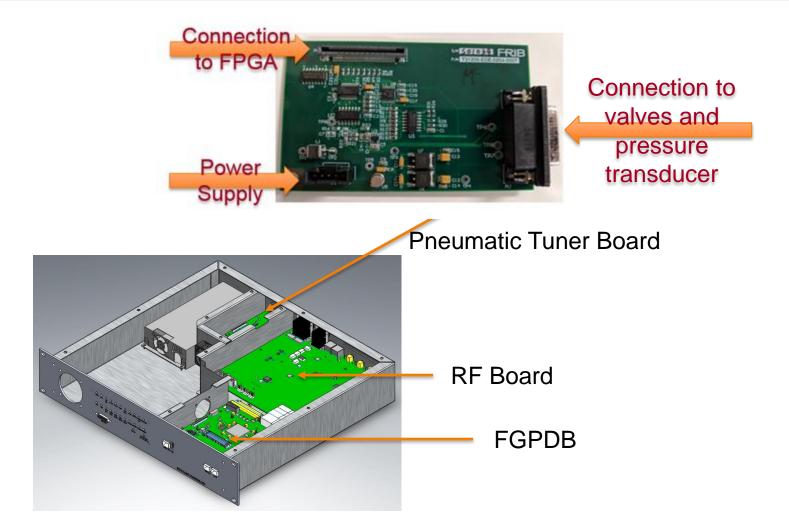
Prototype 1 developed at FRIB, based on ANL design



Facility for Rare Isotope Beams U.S. Department of Energy Office of Science

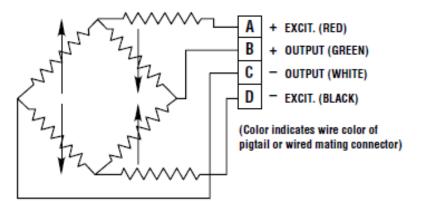
Digital Implementation Circuit

Simplified circuit


- Removed calibration signals and related parts, logic implemented in FPGA
- Added TTL signals to enable / disable valves digitally
- Pressure transducer differential input for better resolution
- Added temperature sensor to monitor PCB overheating

Facility for Rare Isotope Beams

LLRF Hardware



Facility for Rare Isotope Beams U.S. Department of Energy Office of Science Michigan State University

H. Maniar, October 2018, Slide 8

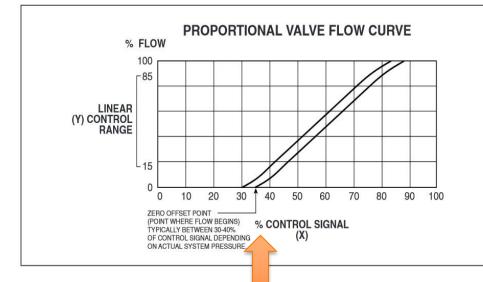
Pressure Transducer

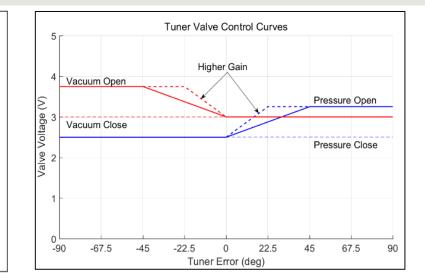
- Installed pressure sensor to monitor accurate manifold pressure
 - Safety features developed i.e. disable supply valve when pressure is too high
- APG PT-L9-C-100
 - Range : 0 to 100 psi
 - Output : 10 mV/V
 - Excitation : 12 VDC
 - Full scale output : 120mV/ 100psi
- Wheatstone bridge

- Tuner driver circuit provides excitation voltages between A and D
- Differential output from B and C provides 120mV maximum output
- Tuner circuit has internal gain to amplify this signal before ADC
- Tested with 100 feet cable (approximate distance between transducer and tuner circuit)

User Interface

User screens have been developed to let user


- Calibrate valves (in Volts)
- Enable / disable valves
- Change gain
- Set absolute pressure limits (in psi)
- Firmware development
 - Four different signals to control opening and closing of supply and return valves
 » Range : 0-5V
 » Pressure Close : PC, Vacuum Close : VC
 » Pressure Open : PO, Vacuum Open : VO
 - Safety features : Closes supply valve if pressure reaches high limit
- Formula used for conversion from voltage to psi
 - Full scale pressure / Sensor sensitivity * Excitation voltage * Differential amplifier gain

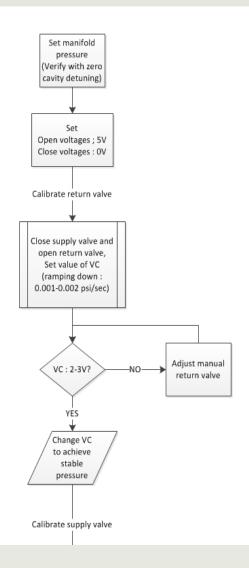


-Pneumatic Tuner Calibration-		
Pressure Valve Open Voltage	3.200 V	3.200 V
Pressure Valve Close Voltage	2.600 V	2.600 V
Vacuum Valve Open Voltage	3.500 V	3.500 V
Vacuum Valve Close Voltage	2.200 V	2.200 V

Pneumatic Tuner			
	Setting	Readback	
Proportional Gain K _p	10.0000	10.0000	
Integral Gain K _i	0.0000	0.0000	
Vacuum Valve	Enable Disa	Disabled	
Pressure Valve	Enable Disa	Disabled	
Manifold Pressure High Limit	38 psi	38 psi	
Manifold Pressure Low Limit	14 psi	14 psi	
Tuner Pressure		0.7963 psi	

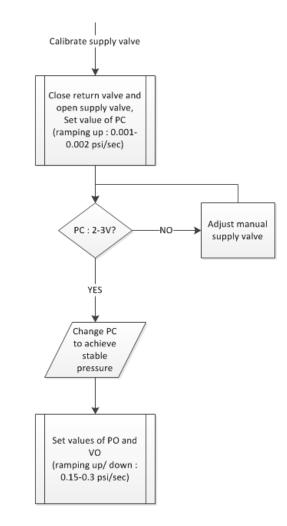
Valve Calibration (1)

Adjust spring screw and valve control voltages to keep control signal at zero offset point



Facility for Rare Isotope Beams

Valve calibration (2)


- Set manifold pressure needed for 322 MHz
 - Verify pressure with zero cavity detuning » In Self-Excited Loop (SEL) mode
 » Or in open loop mode and tuner ON
- Set open and close values for pneumatic valves
- Calibrate return valve
 - Close supply manual valve and open return manual valve
 - Set value of VC so manifold pressure starts ramping down at 0.001-0.002 psi/sec rate
 - Typically value of VC should be in range of 2-3V to avoid hysteresis on valves
 » If not, adjust spring screw on manual return valve
 - Change VC so pressure gets stable and note that value, set VC to 0 volts after that to calibrate supply valve

Valve calibration (3)

- Calibrate supply valve
 - Close return manual valve and open supply manual valve
 - Set value of PC so manifold pressure starts ramping up
 - Typically value of PC should be in range of 2-3V to avoid hysteresis on valves
 » If not, adjust spring screw on manual supply valve
 - Change PC so pressure gets stable and note that value
- Set VC and PC values from noted calibration values, open both manual valves
- Set PO and VO values so pressure increase/ decrease at rate of 0.15-0.3 psi/ sec
 - Typical open voltage values 3-3.5 volts

Conclusions

- Resonance control with the developed digital pneumatic tuner has been verified multiple times during cryo-module tests at FRIB
 Cavities can be stably locked at designed field
- Valve calibration technique has been proved efficient to achieve stable pressure level for smooth operation
- Tuner tracks changes in bath pressure and compensates for Lorentz force detuning
- Pressure transducer differential feedback (in mV) and differential amplifier gain provides correct pressure level inside manifold
- TTL signals allow users to enable / disable valves from CS-Studio screens
- Safety features developed in firmware
 - Avoid excessive manifold pressure and damage to cavities by disabling supply valve when pressure is too high

Path Forward

- Develop scripts to run automatic valve calibration for FRIB Linac
- Manifold pressure keeps changing with change in cryo parameters (i.e. bath pressure), which changes operating point
 - Might need to re-calibrate all valves when installed in FRIB Linac

Authors

H. Maniar, D. Morris, S. Zhao

• FRIB, Michigan State University, East Lansing, MI 48824, USA

- Acknowledgement
 - Special thanks to Gary Zinkann (ANL), Sergey Sharamentov (ANL)
 - Argonne National Laboratory, Argonne, IL 60439, USA
- Reference
 - [1] G. Zinkann, E. Clifft, S.I. Sharamentov, An Improved Pneumatic Frequency Control for Superconducting Cavities, Proc. of PAC-2005, p.4090.

