Piezo Control at DESY, from FLASH to XFEL

M.Grecki, K.Przygoda, H.Weddig, J.Branlard, B.Szczepanski, R.Wedel, N.Shehzad, B.Yang, M.Hierholzer DESY, Hamburg, Germany
T.Poźniak, M.Chojnacki, DMCS, LUT, Lodz, Poland

FLASH

- A1, A6, A7 - double piezos (PI)
- A3 - single piezos (Noliac/PI)
- A5 - single piezos (Noliac)
- A2, A4 - no piezos

MRCW/8- MRCW18, New York, 25-26.10.2018

XFEL

- A1, A2, ... A25 - double piezos, in total 776 cavities with double piezos (PI)
- AH1 - no piezos

TESLA Cavity Tuning

The slow tuner is used for pretuning. It might work at LHe temperature. It allows moving the cavity by $\pm 5 \mathrm{~mm}$, which corresponds to frequency shift of $\pm 2.6 \mathrm{MHz}$. The theoretical resolution of stepper motor is 1.5 nm for one step.

Application of piezo tuners at SRF cavities

- Compensation for Lorentz

Force Detuning (LFD)

$$
\left.\begin{array}{l}
P_{s}=\frac{1}{4}\left(\mu|\vec{H}|^{2}-\varepsilon_{0}|\vec{E}|\right.
\end{array}\right)
$$ forces

- Cavity fine tuning ($\pm 70 \mathrm{~V} \rightarrow \sim 600 \mathrm{~Hz}$)
- Microphonics measurements and compensation

Piezo's at FLASH at XFEL

Manufacturer	Noliac	PI Ceramics
ratings		
Model	SCMAS/S1/A	P-888.90
Cells	8	8
Voltage range [V]	$0 \div 200$	$-20 \div 120$
Blocking Force $[\mathrm{kN}]$	6	$3 @ 120 \mathrm{~V}$
Size $\left[\mathrm{mm}^{3}\right.$]	$10 \times 10 \times 30$	$10 \times 10 \times 35$
Capacitance [uF]	6	12

Manufacturer: NOLIAC Dimensions: 10x10x30mm

Manufacturer: PI Dimensions: 10x10x36mm

Old Piezo Driver

- designed by Nikolay Ignatian
- "Old" piezo driver used in FLASH
- based on PA58, full bridge
- 2 separate amplifiers on single euro PCB
- low gain (40V/V) not allowing to use SIMCON to drive the piezo amplifier

ACC1 cav. 5 LFD compensation (~2004)

Cavity detuning with and without piezostack-based system measured in cav5, ACC1, FLASH accelerator. The accelerating field gradient is $20 \mathrm{MV} / \mathrm{m}$.

Piezo reliability

MTTF $=A_{U}{ }^{*} A_{T}{ }^{*} A_{F}$
A_{u} - voltage factor
A_{T} - temperature factor (constant for cryho conditions)
A_{F} - humidity factor (constant for cryho conditions)

Piezo driving

- We need the peak-to-peak voltage for LFD compensation. For unipolar operation the maximum piezo voltage is $\sim 2 x$ higher than for bipolar mode. That reduces reliability.
- At cryo temperature piezos can be driven with bipolar mode (Pl engineer opinion).
- Bipolar driving at 77 K (liquid nitrogen) is safe for piezos. That was proven in long term experiment performed at INFN LASA Milano (76 days, 3.3 e 9 pulses \rightarrow more than 10 years of operation with 10 Hz)
- Bipolar driving while piezo is worm is dangerous. Piezo can be broken with relatively low voltage. Therefore bipolar driving must be done together with temperature checkout.

— MRCW18, New York, 25-26.10.2018

Main parameters of Piezodriver

- Suitable for both types of piezostacks up to $5 \mu \mathrm{~F}$:
- Physik Instrumente (P-888.90 PIC255); $\mathrm{C}_{2 \mathrm{~K}} 4,4 \mu \mathrm{~F}$
- NOLIAC (SCMAS/S1/A/10/10/20); C 2 2, $4 \mu \mathrm{~F}$
- Maximal supply voltage up to $\pm 150 \mathrm{~V}$ (nominal operating voltage $\pm 80 \mathrm{~V}$)
- Input voltage $\pm 1 \mathrm{~V}$, amplifier gain $\mathrm{Gu}=100 \mathrm{~V} / \mathrm{V}$,
- Operational temperature $\mathrm{Tc}<75^{\circ} \mathrm{C}\left(\mathrm{Tj}<125^{\circ} \mathrm{C}\right)$
- Pass-band frequency up to 1 kHz (for load $5 \mu \mathrm{~F}$)
- Monitoring of output voltage and current
- Single channel PZD with Apex PB51
- 8 channels on single board

-

Piezo driver of class D

- To reduce power losses (and thus reduce heatsinks) - higher assembling density
- APEX SA50CE as a candidate
- Possible EMC interaction with other system components
- Tested in 2009
- output filter is critical part (it is huge for good filtering)
- power dissipation comparable to analogue driver, in reality no gain in power consumption

Piezo Control at ACC3,5,6,7

$-\frac{M}{\text { MRCWI } 18}-$ MRCW18, New York, 25-26.10.2018

ACC6 (SP = $20 \mathrm{MV} / \mathrm{m}$, rep = 5 Hz)

Piezo control for LFD compensation

Sinusoidal excitation with adjustable

- Frequency
- Pulse number
- Amplitude
- Time position
- DC pedestal

Piezo start
Δ

Amplitude \rightarrow dynamic detuning
DC pedestal \rightarrow static detuning
Time position \rightarrow curvature

Piezo control algorithm (adaptive FF)

Piezo control panels (FLASH)

LLRF Control System for XFEL (ATCA based)

front side

rear side $\frac{11}{\text { MRCW } 18}$ - MRCW18, New York, 25-26.10.2018

Piezo Control PCB (ATCA based)

Basic piezo driver parameters:

- 16 channels (due to LLRF system architecture)
- Maximal output voltage range +-70V
- Operational temperature of the power amplifier $\mathrm{Tc}<75^{\circ} \mathrm{C}\left(\mathrm{Tj}<125^{\circ} \mathrm{C}\right)$
- Pass-band frequency up to 1 kHz (for load $5 \mu \mathrm{~F}$)
- DAC/ADC sampling rate at least 20 kHz
- Monitoring of output voltage and current
- Up to 4 periods of sinus wave $70 \mathrm{~V}, 200 \mathrm{~Hz}$ in $5 \mu \mathrm{~F}$ load, 10 Hz repetition rate (thermal limit)

Piezo Control System for MTCA (19 inch module)

- essentially copied project for the ATCA crate
- power supply adjusted (input AC 230V instead of DC 48 V)
- communication through external fiber link instead of backplane links
- first modules installed at FLASH after FLASH LLRF upgrade to MTCA (2013)

Piezo events at FLASH

- 2005 (ACC1 cav. 5 piezo died)
- not clear what really happened, after investigation the cabling was blamed - high self-inductance of the long cables)
- November 212010 (ACC7 cav. 1 actuator died)
- during scan of the static detuning versus DC offset voltage applied to the piezo. The range of the voltage applied to the piezo was changed from maximum negative (-70 V) voltage up to maximum positive (+70V) voltage with single step of 5 V and then the whole process repeated with single transition from +70 V to -70 V
- Sometime in 2011 (ACC3 cav. 1 actuator died)
- Not clear how it happened and when. Problem noticed after event.
- October 292013 (ACC7 cav. 2 sensor and cav. 3 actuator died)
- During the firmware update at PZ16M and uTC at ACC67 on 29.10.2013 the erroneous behavior of PZ16 was observed that destroyed two piezos and also piezo driver.

Understanding the October 292013 event (1)

During the firmware update at PZ16M and uTC at ACC67 on 29.10.2013 the erroneous behavior of PZ16 was observed. The uTC generated random data bitstream that was driving the DAC and output switching relays. After some time (at least 30s, but it could be also few minutes - it was time needed to recognize something is wrong, removing the box upper cover, recognizing the relays clicking, etc.) the piezo control system was turned-off. Up to this time the relays clicks was heard and also a smell of burning components was felt.

During the event the DAC output was set to the random voltage levels with sampling frequency of 3.125 kHz . Rough estimation of the average current for random data sent leads to $\sim 0.92 \mathrm{~A}$ for current limit 1.5 A . The high value of the output current is confirmed by destroyed resistors at the output of the piezo driver and by the destroyed piezo driver in one channel. The dissipated power was 9.2 W and 78 W at the output resistors (10 $)$ and
 power driver respectively.

Understanding the October 292013 event (2)

The expected heat dissipation at piezo can be estimated from Q vs. V characteristics (available for 77 K only). For the full recharge cycle (+-70V) the dissipated heat is $\sim 30 \mathrm{~mJ}$. Therefore one can estimate the average heat dissipation at piezo for 0.92A to $\sim 18.4 \mathrm{~W}$. Since the relays were also randomly switching piezos the current and power dissipation were distributed between both piezos and therefore for single piezo the average current and heat power should be divided by 2. Anyway, ~9W dissipated at piezo for several tens of seconds with very limited heat transfer to the ambient (only through support) heats up the piezo (in particular the middle part) by several tens of degrees. As the destructive test has proven, warming up the piezo to 120 K is dangerous. Applying reverse bias in such condition may lead to voltage breakout of the ceramics and to discharging of
 contiguous electrodes causing a significant metal sputtering and thus short-circuiting the piezo.

Decisions made after 2013 event

- provide a measures to prevent piezo destruction due to overheating and driving in bipolar mode at high temperature
- determine the safe temperature range for piezo operation
- develop the method for measurement of piezo temperature during operation
- equip the piezo driver with hardware solution (no firmware or software!) limiting the energy dissipation at the piezo
- equip the piezo driver with measures against possible hardware failures (piezo operation must be fail-safe)

Piezo thermal properties

Temperature rise in function of pulse amplitude, single pulse, 10 Hz repetition rate

How to measure piezo capacitance?

$$
\begin{aligned}
& G=\frac{1}{R}=\frac{\left(N \bar{V} \bar{V}-\sum V \dot{V}\right)\left(N \bar{I} \bar{V}-\sum I \dot{V}\right)-\left(N \bar{V} \bar{V}-\sum \dot{V}^{2}\right)\left(N \bar{I} \bar{V}-\sum I V\right)}{\left(N \bar{V} \bar{V}-\sum V \dot{V}\right)^{2}-\left(N \bar{V} \bar{V}-\sum \dot{V}^{2}\right)\left(N \bar{V}^{2}-\sum V^{2}\right)} \\
& \bar{V}=\frac{1}{N} \sum V \quad \bar{I}=\frac{1}{N} \sum I \quad \bar{V}=\frac{1}{N} \sum \dot{V} \quad \text { and } \mathrm{N}-\text { number of samples }
\end{aligned}
$$

If ADC's offsets are negligible:

$$
C=\frac{\sum V_{i}^{2} \sum \dot{V}_{i} I_{i}-\sum V_{i} \dot{V}_{i} \sum V_{i} I_{i}}{\sum V_{i}^{2} \sum \dot{V}_{i}^{2}-\left(\sum V_{i} \dot{V}_{i}\right)^{2}} G=\frac{1}{R}=\frac{\sum V_{i} I_{i} \sum \dot{V}_{i}^{2}-\sum \dot{V}_{i} I_{i} \sum V_{i} \dot{V}_{i}}{\sum V_{i}^{2} \sum \dot{V}_{i}^{2}-\left(\sum V_{i} \dot{V}_{i}\right)^{2}}
$$

PEM (Power and Energy Monitor)

PEM - energy integration

PZ16M installed at XFEL

PZ16M installed at XFEL

Detuning and piezo control overview

PZ16M : M4.A4.L2
${ }^{1800} 1$

PZ16M installed at XFEL

Detuning and piezo control overview

PZ16M : M4.A4.L2

Cavity
 Auto Tuning
 DC status
Linear Det.
Linear Det.
AC satus

$500-$

Conclusion

- Piezo control system has been designed, installed, commissioned and operated at FLASH. At XFEL it is installed in a few stations and it is being currently commissioned. In parallel a mass production and testing is being performed. The installation is to be completed during winter shutdown.
- Hard lessons learned breaking piezos at FLASH.
- The experience gained during FLASH operation triggered a big system upgrade to assure safe piezo operation (and also delayed the production for XFEL).
- The main purpose of the presented system is to compensate LFD in pulsed operation mode, however system is so flexible that it can be used (with adapted firmware) also in CW (already demonstrated at CMTB).
- MRCW18, New York, 25-26.10.2018

Thank you for your attention

- Mrnmm

Backup slides

$-\mathrm{Am}$
Uffinumanaferans: M.Grecki, DESY

Piezo sensor signal

$-\frac{1}{M R C W 10}-$ MRCW18, New York, 25-26.10.2018

Piezo capacitance

$\frac{N}{\text { MRCW18 }}$ MRCW18, New York, 25-26.10.2018
 Unum

Piezo electrical parameters

MRCW18 - MRCW18, New York, 25-26.10.2018

Piezo electrical parameters

Piezo electrical parameters

 MRCW18- MRCW18, New York, 25-26.10.2018

Dynamic properties

- Piezo resonant frequency $\sim 40 \mathrm{kHz}$
- When mounted the dynamics is dominated by cavity (resonant frequency $\sim 200 \mathrm{~Hz}$)
- Tests conditions:

No RF in the module
Piezo excited by sequence of sinusiodal pulses ($A=70 \mathrm{~V}$, $\mathrm{f}=200 \mathrm{~Hz}$, frep $=10 \mathrm{~Hz}$)

After input pulses have been stopped the piezo response
 recordered ($\mathrm{fs}=5.6 \mathrm{KHz}, \mathrm{trec}=40 \mathrm{~ms}$)
MRCW18 ${ }^{-1}$ MRCW18, New York, 25-26.10.2018

Dynamic response of piezo \& cavity

$-\frac{1}{\text { MRCW10 }}-$ MRCW18, New York, 25-26.10.2018
$-($ Uflow lever radio frequency - M.Grecki, DESY

Dynamic response of the piezo mounted in cavity

