Performance test of prototype cryomodule for RAON

Youngkwon Kim On behalf of Acceleration Systems Team

2018. 10. 26

- Cryomodule and RF system

Test results: QWR and HWR

Summary

SC cavity specifications

Rare Isotop

SC cavity specification Coupler for SC cavity specification

Parameters	Unit	QWR	HWR	SSR1	SSR2	Parameters	Unit	QWR	HWR	SSR1	SSR2
β _g	-	0.047	0.12	0.30	0.51	Cav. β _g	-	0.047	0.12	0.30	0.51
f	MHz	81.25	162.5	325	325	f	MHz	81.25	162.5	325	325
Aperture	mm	40	40	50	50	Interface	inch	3.375	3.375	6	6
Q R _s	Ohm	22	42	94	112	Qext/10 ⁶		2	2	5.2	TBD
R/Q	Ohm	468	310	246	296	Pin	kW	<2	<4	<15	<20
V _{acc}	MV	1.1	1.4	2.5	4.1	Trans.	inch	$1\frac{5}{8}$	$1\frac{5}{8}$	$3\frac{1}{8}$	$4\frac{1}{16}$
Е _{реак}	MV/m	35	35	35	35	Imped.	Ohm	50	90	100	100
B _{peak}	mT	57	55	55	67						
$Q_{calc}/10^9$	-	0.24	1.45	>5	>5						
Temp.	K	4.5	2.05	2.05	2.05						

Specifications of RF system

HPRF : RF Source (Solid State Power Amplifier) RF Transmission Line (Coaxial type rigid transmission line)

	Cavity	Quantity (EA)	Frequency (MHz)	RF Power (kW)	RF Transmission Line
	RFQ	2	81.25	80	6 1/8 inch EIA
SCI 1	Rebuncher	4	81.25	20,15,4	3 1/8 inch EIA
SCLI	QWR	22	81.25	4	1 5/8 inch EIA
	HWR	102	162.5	4	1 5/8 inch EIA
SCI 2	SSR1	69	325	8	3 1/8 inch EIA
SCLZ	SSR2	144	325	20	4 1/16 inch EIA
	RFQ	2	81.25	80	6 1/8 inch EIA
SCI 2	Rebuncher	4	81.25	20,15,4	3 1/8 inch EIA
SCLS	QWR	22	81.25	4	1 5/8 inch EIA
	HWR	102	162.5	4	1 5/8 inch EIA
P2DT & CSS	HWR	6	162.5	4	1 5/8 inch EIA

LLRF: RF Controller (LLRF), RF Reference Line

RF Dynamic Phase Error Requirement	±1 degree (Peak-to-Peak)	
RF Dynamic Amplitude Error Requirement	±1 % (Peak-to-Peak)	

Cryomodules for SCL3

QWR cryomodule

HWR cryomodule A

HWR cryomodule B

Prototyping of High Power RF Amplifier

-RAON

QWR RF System

• HWR RF SSPA

64 Unit_#1 62 Unit_#2 62 Unit_#3 9 Unit_#3

- SSPA 1 Unit Test

•

•

SSR1 RF SSPA

- Combined Mode Test

Specification	Value
Frequency	325 MHz
Output Power	7 kW

SSR2 RF SSPA

specification	value		
Frequency	325 MHz		
Output Power	20 kW		

Rare Isotope

Science Pro

• Prototyping of high power RF amplifier was conducted.

162.5 MHz

7 kW

Frequency

Output Power

- All amplifiers are based on solid-state amplification technology.
- Every amplifier is equipped with the circulators for protection from reflected RF.

Digital LLRF Development

- Upgrade of analog LLRF system to digital LLRF is ongoing.
- 4 channel serial high speed ADC is adopted.
- Xilinx zynq SoC is used.
- With PLL circuit, the sampling of ADC, DAC/clocking of FPGA can be changed easily.
- One hardware can support any cavity in SCL3 and SCL2
- Generator-Driven mode and Self-Excited Loop algorithm have been implemented and being tested.

ltem	Spec
RF Input	4
RF Output	1
RF ADC	AD9656 (16 bit, 4 ch, serial)
SoC	Xilinx Zynq Ultrascale ZU9EG
EPICS IOC	In Arm core of Zynq
Clock Gen	HMC7044 PLL

Test Result with Digital LLRF

Institute for Basic Science

• PLL circuit test (up to 650 Mhz)

CAS

Cryomodule performance test

Cavity: 2nd prototype(RI) Tuner: 2nd prototype (Mirho) Coupler: 1st prototype (Toshiba) Cryomodule: 2nd prototype (Vitzro tech.)

Total thermal load at various E_{acc}

Target total thermal load @ 6.1 MV/m: 25 W

QWR cryomodule in SCL demo

ECR-IS LEBT(low energy beam transport) RFQ MEBT(medium energy beam transport) QWR cryomodule

Beam parameter	Value
Particle	Oxyzen 7+
Energy	10 keV/u @ ECR
Beam current (peak)	>5uA after RFQ
Beam pulse width	100 usec.
RF pulse width (RFQ)	250 usec.
RF for QWR	CW
Repetation rate	0.1 ~ 1 Hz

CAON

Rare Isotope Science Pro

Beam energy

-----RAON

Rare Isotope

HWR cryomodule A

Cavity: 3rd prototype(Viztro tech.) Tuner: 2nd prototype (Montrol) Coupler: 2nd prototype (Toshiba, Viztro tech.) Cryomodule: 2nd prototype (Vitzro tech.)

Static thermal load	Dynamic thermal load	Total thermal load	
C C M	1.4 W (cavity#1)	12.0.14	
0.0 VV	4.8 W (cavity#2)	12.8 VV	

Target total thermal load @ 2.92 MV: 14.1 W

• **RF** stability test

- Amplitude stability: 0.93% (requirement: ±1%, peak-to-peak)
- Phase stability: 0.784° (requirement: ±1°, peak-to-peak)

Summary

- What we done:
 - Performance test of prototype cyromodules for SCL3 was conducted.
 - HPRF and LLRF system was developed.
 - Primitive control of cavity was started.
- What we will do:
 - Integration test of cryomodule and LLRF will be conducted.
 - QWR cryomodule (10.29 ~)
 - HWR cryomodule type B
 - Measurement of Δp (CM, cryo. system, warm pump system), Δf, source of microphonics

